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A general construction program is given for the generation of higher-order Clifford algebras of
various signatures together with their faithful representations in terms of Pauli-type operators.
The analysis is based upon several isomorphism theorems that provide a simpler understanding of
the standard classification scheme of these algebras, and an improved signature index notation is
suggested that identifies each of the five types of Clifford algebras

I. INTRODUCTION

The algebraic settings of physics have been proven to be
an indication of its level of development throughout its his-
tory from vector algebra to tensor analysis, to Lie algebras,
and more recently to Clifford algebras and the related exteri-
or forms. We are able to present the ever-expanding scope of
physics in more and more compact formalisms. However, it
takes time for physicists to adapt themselves to each new
mathematical setting. In the case of Clifford algebra, it was
half a century after its discovery® that Pauli and Dirac initi-
ated its first applications in quantum physics, and only after
about 30 more years did physicists begin to recognize the
profound significance of Clifford algebras for physics, main-
ly through the pioneering works of Hestenes.> Compared
with other mathematical methods used in physics, this is a
rather long course. In the case of group theory, the first
works on continuous groups® appeared in 1888-1893. How-
ever, the physically important representation theory of Lie
groups appeared as late as 1924, and four years later Weyl
published his monumental work* on group theory applied to
quantum mechanics. In the case of Clifford algebra the rea-
son for this time lag in application is partly in the mathemat-
ics itself; it had not been put in a form convenient for use. On
the one hand, we need a suitable formulation directly related
to physical space-time, and on the other hand we need a
representation in block matrix form as in the Dirac equation.
In recent years, a great deal of important work has been done
for the foundations,* for the representations,%® and for such
applications as relativistic quantum theory.'®!" Clifford al-
gebras of higher order are now being extensively used, espe-
cially in particle physics.'?

For mathematicians the classifications are of central im-
portance, but the representations of Clifford algebras seem
of little interest to them. This is because, unlike a group, a
Clifford algebra has essentially only one faithful inequiva-
lent irreducible representation. For physicists a representa-
tion is not only indispensable for numerical calculations, it
also helps with the understanding. This is why there are so
many different but equivalent representations associated
with the Dirac algebra. The construction of a representation
itself can provide us with a better overall understanding of
the classifications, as will be shown in this paper.

It is no wonder that the first representations of even-
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order Clifford algebras were given by the physicists Jordan
and Wigner.!* Later Brauer and Weyl™ (cf. also Ref. 15)
obtained a complete result for any order, but it was “un-
necessarily” sophisticated and has so far rarely been used.
On the other hand, Atiyah ef al.'® have given a complete
classification for universal Clifford algebras without provid-
ing any realization to be used for algebraic manipulations.

It was Salingaros who, in a series of important pa-
pers,'™?! provided an explicit realization of the universal
Clifford algebras in terms of differential forms, duality, and
an associative product, which lead to a natural classification
of the universal Clifford algebras based on their associated
group structure. Salingaros’ articles show clearly how profi-
table a study of the representations of Clifford algebras can
be.

In this paper we concentrate on the generation and the
classification of Clifford algebras, starting directly from the
Clifford basis elements. In analyzing the possible combina-
tions of their direct products we found two universal proce-
dures for the construction of the higher-order basis ele-
ments. Following these procedures, starting from Pauli-type
operators, we are able to construct all universal Clifford al-
gebras in terms of their basis elements. This basis element
analysis also made it simpler to establish a complete set of
equivalence theorems among different-signatured Clifford
algebras. Combined with the two construction procedures
the complete classification of universal Clifford algebras is
given in a rather simpler way.

The whole work is divided into three main parts. In the
first part, the general theory and equivalence relations are
presented, together with an elucidation of the properties and
importance of the canonical element. In the second part gen-
erating methods are formulated and a particular one is devel-
oped that generates the hierarchies of even and odd order
algebras. It is as easy to apply as a rule of thumb, yet it
provides us with a clear understanding of the classification
scheme of Clifford algebras without involving any abstract
propositions. The third part discusses the various types of
Clifford algebras and their interrelationships. The essential
differences between even- and odd-order algebras are clari-
fied with the aid of the canonical element.

Il. GENERAL PROPERTIES OF EVEN- AND ODD-ORDER
CLIFFORD ALGEBRAS

In this section we will present proofs of the two funda-
mental theorems that provfide the overall classification
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scheme of the Clifford algebras. We begin by defining the
notation.

A universal Clifford algebra is an n-dimensional real
linear space with » anticommuting basis elements

A, ={0,,05..,0,} (1)
endowed with the multiplication rule
0,0; + 00, =28"%, 2)

where e is the unit element of the algebra and g/ = + §, is
the metric tensor. Metrics other than the Euclidean type are
important in physical applications, and we will give a syste-
matic discussion of them. For a particular Clifford algebra, p
of the basis elements have a positive square o7 = + 1and g
of them have a negative square (0;)> = — 1. The notation
o; will be employed for a basis element of a square of — 1.
For each order n there are n + 1 Clifford algebras, which we
denote by 4 ;,, where

A5 =10,02.,0,30) 1 1,40} 1 y=n} > (3)

s§=p—4q, (4)
and, of course,

—n<s<n, n=p+gq. (5)

The pair of integers p, ¢ is called the signature and the differ-
ence s =p — q is referred to as the signature index. We
should note that s is even when 7 is even and it is odd when
is odd.

Two Clifford algebras of the same order but with differ-
ent signature indices can be algebraically equivalent to each
other. The following two theorems and their corollaries ex-
haust all of the general equivalence relations.

Theorem I: Two Clifford algebras are equivalent when
their indices are the same modulo 8

A=A, (6)
where the symbol = denotes algebraic equivalence.

Proof: Assuming ¢>4, starting from (3), first let us de-
fine

JR—— ’ ’ ’

F=0‘p+,0’p+20p+30p+4 3 (7)
where

2 ’ ’ ’ ’ ’ ’ ’

[ =0,,10,,20, 130,405 ,10,,20, 30,4

We can easily show that the element I'o,, _ ;,

Top . =05411051205,130,,40;.)> (8)
where j = 1, 2, 3, 4 has a positive square

(To,,;)*=To, ;To, ,=1.
It is easy to verify that the set of elements

{01,0..,0,,T0, Lo, ., L0, 3. L0, 4,00, 5,000},

9

in which the four elements o, , ;, with j =1, 2, 3, 4 of the
basis (3), are replaced by the four elements and I'o,, , ; con-
stitutes the basis set of the algebra 4 {3, which has the same
overall set of elements as the algebra 4 ;. This means that the
two algebras are equivalent to each other. Conversely, we
can get back from (9) to (3) by

[ ’ ’ ’ 4
F=FUP+IFU‘,+2FUP+3FUP+4 .
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By carrying out the product operations we find that
I'=rT. (10)
This process can be repeated as long as ¢>4 negative square
elements remain.
Theorem II: Two Clifford algebras are equivalent when

their signature indices are reflected about the values = + 1,
which means that

A5 =A2-5, (11)
Proof: Starting from the basis elements of 4 ¢, with the
signature p,g,
(12)

we can form a new set of basis elements for 4 2~* with the
signatureg+ 1,p — 1,

{01020,30 4 13000}

{01010} £ 1,010} 1 31.-4010430102,0103,...,010,} . (13)
Let us check the various products:
00,00, = — 0,0, =0,0, = 0%0',0'5 = — 010,010, ,
o,(0,0,) = — (040,)0,
(0,0))*=0,0/000] = —0i0*=e,

—ojo = —e.

So they really do form the algebra 4 2~*. Conversely, from
(13) we can get back to (12) by the same procedure. Hence
(12) and (13) are equivalent.

Corollary I:

2
(010;)" = 0,0;0,0; =

Fors=p—qg=0(mod4),4{ =4 " (14)
Proof: Let p = g + 41, then by Theorem I,
AsEAS_81=Aﬁ_4,_(q+4I)=Az_p=A —s.
Corollary II:

For s=p—¢=0 (mod 4), A;=A;*?. (15)

Proof: Using Theorem II and Corollary I, we have

AS A T mALT (T =452,

Corollary III:

For s= —1 (mod 4), AS=A:*Y, (16)

Proof:s= —1(mod4) meansp=qg— 1+ 4(t—1),¢
being some arbitrary integer. Then by Theorem II and
Theorem I we get

S 4 —1+40—1) 42— [—1+44—D] _ 43—4¢—1)
A, =4, =A; =Ad;

EA3+4(K—1)=A-1+41=A.7+4' (17)
Repeating this process / times and we have finally
AS =AY, (18)

These two theorems and their three corollaries exhaust
all the equivalence relations among Clifford algebras with
different indices. The Clifford algebras withs = — 3 and 1
have no additional equivalence relations besides the general
period of 8 and the reflection about s = 1.

lil. CANONICAL ELEMENT

The properties of Clifford algebras are critically related
to the properties of the “canonical element” or “volume ele-
ment in # dimensions,”!”?? which is defined as the product
of all the basis elements:
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o(n)=0,0,+0, . (19)
It is easily demonstrated that
oa(n) = tao(n)oy, (20)

where the positive sign appears when the order n is odd and
the negative sign appears when # is even. Thus the canonical
element anticommutes with all of the basis elements when n
is even and commutes with them when » is odd. The square of
o(n) is

J
i s=0 (mod 4) (n even) [o(n)]*=e,
(i) s=2 (mod 4) (n even) [o(n)]®’= —
(iii) s= —1 (mod 4) (nodd) [o(n)])*= —
(iv) s=1 (mod 4) (n odd) [o(n)]*=e.

Equation (22) has profound consequences on the prop-
erties of even- and odd-order Clifford algebras. Because of
the minus sign in (22), in an even-order Clifford algebra
only the identity element commutes with all other elements
and there is only one irreducible representation (cf. Appen-
dix A). For n odd, o(n) commutes with the basis elements,
50 we have a larger center consisting of the two elements ¢
and o(n) that commute with all elements of the algebra.
This suggests, in the p — ¢ =5 =1 (mod 4) case, the possi-
bility of introducing the projectors P+ used by Basri and
Bamt’lz.zo

Pr=jleta(m)], (27)
which, because of (26), are idempotent, and satisfy
(Px)>=PF, PP =P P} =0. (28)

Let A7 denote the subalgebra of elements that are
formed from the set of all even products of nonidentical basis
elements:

A7 {e0,0;,0,0,0,0,.}. (29)
Then using (28) we get

A, =4} +4,_,, (30)
with

AF =PFAE. a1

Equation (30) means that when s = 1 (mod 4), 4,, is com-
posed of two even-order disjoint subalgebras and the faithful
representation M of A, is in block diagonal form

+ 0
MF:( 0 M—)’

where the M * are the representation matrices of 4 = ,. A
similar decomposition was given by Brauer and Weyl.'*

IV. THE GENERAL GENERATING METHOD

It is well known that the direct product gives rise to
higher-order Clifford algebras:

A XA, =A4__ ., (32)
where either m or n must be even. In this section we will
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e,

[e(m))? = 0,0,0,0,~0,

= (= =122 2

=(_1)"("—l)/2+q, @1
and recalling Eq. (6) we have
[0(n)]2= (— 1)(1/2)('!2_;)
(= 1)as n = even,
={(—l)“/2)(s—1), n=odd. (22)
Hence there are four possibilities:
(23)
(24)
° (25)
(26)
—

examine a systematic way to generate such higher-order al-
gebras. To accomplish this we must analyze the implications
of this expression (32); more explicitly we need the detailed
relationships between the basis elements of 4, ., and those
of A, and A4,.

We will proceed to show how the direct product of an
even-order algebra A ;, of signature (p,q), called the gener-
ating algebra with an algebra 4 ¢ of signature (u,v) called
the starting algebra (which is either of even or odd order)
may be employed to generate a final algebra 4 ;,, . , of order
m + n and signature (P,Q) (which is even or odd, respec-
tively) through the use of Eq. (32). To accomplish this we
will take direct products of the basis elements:

A {04000,300 4 110en0 (33)

AL {1 T eTh by (34)

wheres=2p —mand t = 2u — n.

Note that for the even-order generating algebra the ca-
nonical element o(m) anticommutes with the basis and it
could be treated on the same footing as other generating
elements, so let us agreetouse 2,;, k= 1,2,....,m + 1, torep-
resent all of the o, and o} of Eq. (33) plus o(m).

The problem is to choose a set of suitable compound
basis elements 2, X 7, 2, X 7; such that the anticommunica-
tion relation

(ZeXT)(EX7) + (Z,X7;) (2 X7,) = 28 De
(35)

is satisfied. Here the compound metric is dependent on that
of the component metrics and will be given later.

Basically there are two cases.

(1) Part of the compound basis set is formed from m of
the m + 1 possible choices of X,

zk Xe,., k = 1,2,...,m,k #ko y

where e, is the unit element of the starting algebra 4 ¢, so the
other part must be of the form

2 X7 J=12,.n,

where 2, is the remaining =, element that was omitted
above. Thus we obtain the complete basis
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A, ¥4, {Z X752, Xe }>A,,  ,: P[Z,.x],

(36)
where k, is fixed for a particular basis set and k #k, runs
through all of other indices of =, . The symbol P [Zx,%] is
used to designate this generating program.

(2) Part of the compound basis is formed from n — 1 of
the n possible choices of 7; as follows:

e, XTjy =Lty jHio

Here e, is the unit element of the generating algebra 4 ;,, so
the other part must be of the form

2 X1, k=1..m+1,
with fixed j, and j#j, runs through all other indices of 7:
A XA, A2 X7y, €, X} oA, 0t P[XT, ] (37)

The notations P [2Z, X ] and P [ X7, ] will be explained
below. Each of these two classes of basis elements can be
easily shown to make up a complete basis for the (m + n)-
order compound final algebra 4, .

In order to carry out this direct product method wher-
eby an even-order m generating algebra 4, operates on a
starting algebra 4 |, to produce the higher-order final algebra
A5 0

AL XA, =47, (38)
there are three choices to make: (1) the generating algebra’s
signature index s can be selected as either 0 mod 4 or as
2 mod 4, (2) either the program 2, Xe, or e, X7; may be
chosen, and (3) the characteristic element may have a posi-
tive square (2, or 7, ) or a negative square (2; or 1} ).
These three binary choices provide us with the eight differ-
ent generating procedures that are listed in Table I. Each
program is designated by the symbol P° (proc) in which the
argument “proc” gives the type (2, Xe, or e, X7;) and the
sign of the square (o, or 7; for positive and oy or 7} for
negative) of the characteristic element. The table gives the
signature index w of the generated algebra in terms of the
indices s and ¢ of the two lower-order algebras. It also gives
the same result in terms of the signatures themselves, which
are contained in the following equivalent expression for the
algebra generating procedure:

C,.(pg)XC,(up)=C,, ,(P,Q), (39)

where (P,Q) is the signature of the final algebra and, of
course, w = P — Q. Coquereaux?” gives a few constructions
similar to ours.

V. ALGEBRA GENERATION PROCEDURES

Now it is a simple matter to use the algebras 4 5 as the
generating algebras for constructing the complete set of Clif-
ford algebras. The P*[ XT;, ] procedures are more conven-
ient for this purpose, and because 4 2 =4 9 by Theorem II
we only use 45 and A ; 2 as the generating algebras. This
causes Table I to reduce to Table II.

The operations R, M, and L defined in Table II may be
looked upon as generators of higher-order algebras with the
properties

RA, =433, (40)
MA, =4 ,, (41)
LA, =414, (42)

where Egs. (40)—(42) are special cases of Eq. (38) in a new
notation. The repeated use of these operations R, M, and L
generate the hierarchies of algebras presented in Figs. 1 and
2. The R operation generates an algebra below and two to the
right, M generates one immediately below, and L generates
one below and two to the left, as mentioned in the captions.
The algebras 4 ; with # =0, 4 2 serve as the starting alge-
bras for generating the even hierarchy given in Fig. 1 and 4 |
with # = 4 1 are the starting algebras for the odd hierarchy
presented on Fig. 2. Thus, 43 can be generated from 4 3 by
this method, but the other two algebras 4 2 and 4 ; 2 cannot.

Brauer and Weyl* also expressed higher-order algebras
in terms of direct products involving A4 5 matrices but they
did not present a systematic hierarchy of generated algebras
of the type shown in Figs. 1 and 2.

VI. INEQUIVALENCE THEOREMS

We showed that the equivalence theorems limit the
number of different types of Clifford algebras to no more
than 5, and mathematicians have already worked out the
classification of the five types of algebras according to the
representation spaces® or to the direct product construc-
tion.”> We have not found any inequivalence theorems that

TABLE 1. Characteristics of the eight procedures for generating higher-order Clifford algebras by the formation of direct products.

Final
Final signature

s=p—gq Program signature (P,Q) index w Equivalence
PO[Z,, X], (P+ug+v) s+t

O(mod 4) P°[Z; X], @P+v+lg+u—1) s—t+2 —s+1
PO[XT,], (p+ug+v) s+t
PO[X7,], (g +up+v) —s41 s—t+42
P[2, X], (P+u—1lg+v+1) s+1—2

2(mod 4) Pz X1, (p+v,g +u) s—t —s+142
P X7}, P+u—1g+v+1) s+t—2
P[x1} ], (g+u+lpt+v—1) —s+1+2 s—t
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TABLE II. Procedures for forming higher-order algebras using the second-order generating algebra 4 3. The signatures (P,Q) and of the final generated

algebra 4 % ., are given in terms of those (u,0) of the starting algebra 4 .

Final

Generating Final signature
algebra Program signature (P,Q) index w Symbol
A3 P°[ %7 ] (u+lLo+1) t M
A3 P[x7}] (u+1v+1) t M
A5 P x7,] (u—1p+3) t—4 R

;2 P X, (u+3v-1) t+4 L
prove that these five algebra types are definitely inequivalent A3 XA "2 =4.7%{o, X7, 0103 X7, ; 03 X7 ;

with each other. For a long time some physicists have as-
sumed that C,(3,1)==A42 is equivalent to C,(1,3)=4 .3,
and it was Salingaros who first made it clear that they are not
by the use of a group-structure approach.'® This might have
important implications in various branches of theoretical
physics. In this section we will give a more straightforward
discussion of this problem based on direct product proce-
dures. The inequivalence theorems that we prove also follow
from a group theoretic construction.*>

Algebras constructed by the programs given above dif-
fer not only by the generating and starting algebras but also
by the procedures used. For example, there is no general rule
as to whether or not

A, XA, #4,,x4},
if 4% #A" . Nevertheless we do have the following theorem.
Theorem IIL: Given 4 %A .2, then
An2FATh (43)
Proof: Consider the two algebras 4 !, and 4 '~ ? with the fol-
lowing sets of basis elements:
AT T Tus Tho (s Tl o} (44)
and
(45)
These algebras differ only by the replacement of 7, by 7., asa
basis element. Using A9 through program P [X7%:]
(or P [ X7y ] (M step)) we get the two compound algebras

t—2, . ’
AT Ty ToTh Tl o 1

(1] t t . . .
A3XA, =4, o\ X7, 0005 X7,; 05 X7, ; €, XTyens,
ea><7'jo_1,e,XTJOH,...,eUXT“;

€0 X Tl 13es€e X Tl v b

2 0 -2
Ay Ay Ay
4 2 0 -2 -4
N YRR V! A, '
6 4 2 0 -2 -4 -6
A a2 R A A A

FIG. 1. Hierarchy of even-order algebras generated by the procedures of
Table II. For example, L generates A §, M generates 4 2, and R generates
A fromAl.
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€ X T1seeesCo XTjy — 130090 XTy_ 13

€y X Tl ey XTh y v}

All but two of the compound basis elements from these two
sets are the same, since only e, X7, in4; ., ande, X7, in
A '~2, differ from each other. But according to Appendix B,
these two algebras can be equivalent only when =2
(mod 4), otherwise A%, ,#4°>%. On the other hand,
when ¢ = 2 (mod 4), according to Corollary II we will have
A’ =A"!"2 which is against our assumption, so this case is
eliminated. Hence the theorem.

Theorem IV:

Aj#47 (46)
 FAga O P 47
Ay A (48)

Proof: Suppose that the opposite is true. Then it would
be possible to show, for example, that (o, 0, 0%)
= (o}, 03, 0}), which means there would be at least one
element of 4 ;* that behaves like o,, anticommutes with
some other elements, and has a positive square.

We will show that this is impossible in the case of (48).
The most general form of an element in 4 ;% is

w=ae+ Yboi + E;c,_ka;a,; +do(3),
i b

where |, j, k = 1, 2, 3, j##k, and the coefficients @, b,, c;, and
d are real. The commuting part ae + do(3) should be
dropped if w is to have the same algebraic properties as a
basis element. In the 4 ;3 case, w can also be put in the form

5

Ag

7 5
A7 Az A 7
FIG. 2. Hierarchy of odd-order algebras generated by the procedures of
Table II. For example, L generates 4 }, M generates 4 ; >, and R generates
A;" fromd ;3.
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w=Ybo; + Yc0(3)0, (49)
7 J
since, for example, o(3) o} =0{ 0} 0} 03 = — 0] 0;.
Then
2 2
w’ = (Zbio{) + (cha(3)a;) ,
i 7
+ Ebicj(a}{a"(3)0}f +0(3)o;0})
]
= —3(bi+¢}) —2003) Y hic;, (50)

where o(3)=01, 03, 03, is algebraically independent of e
even though it commutes with the whole algebra 4 ; *. There
is no way to choose the real coefficients b, and ¢, to make
w? = e, with a positive square, and hence 4 7 3#A4 5”3,
Similar but much easier proofs can be applied to the other
two cases (46) and (47).

Vil. TYPES OF CLIFFORD ALGEBRAS

We are now in a position to write down each distinct
algebra type for all of the signature indices in the principal
range from — 3 to + 4:
signatureindexs= -3 -2 -1 0 1 2 3 4
algebratyp0 = E D C B A B C D

(51)
Theorem II was used to identify the algebra types that are
the same due to the symmetry about the values = + 1, and
Theorem I ensures that this pattern repeats modulo 8 for
signature indices s outside the principal range. Theorem 11
ensuresthatA °=4 2,CorollaryIlentails4 =4 ~2 andfrom
Corollary III, A *~A . Then Theorems IV and III ensure
that 4, B, C, D, and E are all inequivalent with each other, so
there are really only five different types of Clifford algebras.
They differ by their “starting algebras”™: 4 ;% 4,341,
A5, A}. (Wechoose 4] to characterize the 4 9 type rather
than 49.) Three of these five algebras have the following
carrier fields:

AY: real number field: R,
A7 (52)
A ;% Hamilton’s well-known quaternion field: H.

What about 4 ;> and 4 }? For 4 |, the two elements {e,c}
can be written as the linear combination {(e + 0)/2,
(e — 0)/2}={a, £} and the whole algebra is composed of
two disjoint parts:

a*=a, =B, aB=PBa=0.

So we have A} = R + R, or following Porteus,” 4| =2R.
From Fig. 2 and Table I1,

A7 =A4;7Xx4]
=HXR=HX(R+R)=H+ H="1H, (53)
which is also a direct sum. Both 4| and A4 ; * are called

complex number field: C,

double field algebras.
Thus we have five different types of Clifford algebras:
s= =3 =2, -1, 0 1,
4
algebra = 2H, H, C, R, 7R, (54
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The order of the algebra also turns out to be related to
the dimension of the representation space. Because each M
step has a 2 X 2 representation matrix it can easily be shown
that®

A,I,EZR(Z("_”/Z), ASgR(2"/2),
A _1§C(2("_1)/2), A _2§H(2"/2—1),
A _3EZH(2(H_3)/2),

where, for example, H(2">~') means that this is a linear
space of dimension 2™>~ ! with the carrier field H. Table ITI
summarizes the notation employed for several schemes of
classification.

(55)

VIIl. RELATIONS BETWEEN GENERATING AND
GENERATED ALGEBRAS

In the previous section we gave the signature indices for
the five types of Clifford algebras. The generator M increases
the order n of the algebra by the amount 2 without changing
the signature index s so the algebra type remains the same.
On the other hand the generators L and R decrease or in-
crease s, respectively, by 4, and hence they can change the
type. In the case of even-order algebras these two generators
form R-type algebras from H types and H types from R alge-
bras as follows:

LR, =H25 LH, =R.33%,

RR;, =H3%%, RH,=R%S%.
In these expressions one should be careful not to confuse the
symbol R used for the generator and R denoting the real
algebra type. A similar relationship exists in the odd-order
case in the sense that the generators L and R form 2H-type
double field algebras from 2R double field ones, and they also

form?R from 2H.When these two generators operate ona C-
type algebra they form another C type,

(56)

LC: =C:5%, RC:=C:¢

n42°

(57)

In other words, in the odd-order case there is no mixing
between the double field and the C algebras. This is impor-
tant because the faithful inequivalent irreducible representa-
tion of a double field algebra has twice the dimensionality as
that of the C-type algebra of the same order. On the other
hand, R- and H-type algebras of the same order have repre-
sentations of the same dimensionality, as is the case with
double field 2R and 2H algebras of the same order.

Another way to see the relationship between the various
algebras is to carry out the generation of an odd-order alge-
bra using the fundamental complex number algebra 4 [,
which has only one basis element i = [ — 1]'/? as the start-
ing algebra. We generate as follows:

AL XAT =45, (58)
where m is even using the procedure P"‘[Ek0 X] of Eq.
(36). For this case there is only one 7; element, namely
7; = i. We select 7, as the canonical element o(m) of the
A, algebra, and Eq. (36) gives for the new basis
2 X1 =lg(m), (59)

Ek Xe,r =0k, k= 1,...,m,
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TABLE III. Comparison of various prevailing nonmenclatures for Clifford algebras.

Signature Present
Order index work Porteus® Salingaros® Porteus*  Salingaros® Coquereaux*

n s A R,, APe )
0 0 A3 =R} R(1)=R No=R R, A4°%° (0,0)
1 -1 Afl=cC[! cy=cC S,=C R, A% 0,1)
1 1 A} =R} 2R(1) =R NoxNy=R+R Rio A (1,0)
2 -2 A7 =H;? H1)=H N,=H R, A°? (0,2)
2 0 A3 =R? RQ2) N, R,, AN (1,1)
2 2 A2 =R? R(2) N, Ry, A% (2,0)
3 -3 A73=2H;> 2H(1) =2H N,XN,=H+H Ry, A% (0,3)
3 -1 Fl=c5t c@2) 5,=5 R, A (1,2)
3 1 A} =?R} R(2) N,XNy=N, + N, R,, A¥ 1)
3 3 43=C3 cQ) S, =S Ry, 430 (3,0)
4 —4 A =H[* HQ) N, R, A% (0,4)
4 -2 Fi=H[? HQ2) N, R, AW (1,3)
4 0 A9 =R R(4) Ny=M R, A% 22)
4 2 A =R? R(4) Ny=M R,, A 3.1
4 4 Ay =H} H(2) N, R,, A% (4,0)

"Reference S.

b Reference 21.

¢ Reference 22.

where the elements o, are the basis of the algebra 4. We
know from Egs. (23) and (24) that for an even-order alge-
bra the canonical element o(m) has a positive or negative
square depending upon whether s=0mod4 or
5 = 2 mod 4, respectively. Therefore for these two cases the
generated algebras will be

A5, s=0mod4,

A3, s=2mod4.

Thus the final algebra that is generated has the signature
index w= — 1 mod4. This means that irrespective of
whether or not we start with an R or an H algebra we always
generate a C algebra. There is no mixing with the double field
algebras.

If we start the generation process with the 2R double
field algebra 4 | instead of 4 ;! and carry out the same pro-
cedure with the Pauli matrix o, selected as o, then the final
signature indices will be reversed,

Af,.><A1"‘=[ (60)

. stl, s=0mod4,
anxdi=y ~ (61)
wils S=2mod4,

and only the double field algebras R and 2H with
w=1mod 4 and w = — 3 mod 4, respectively, will be gen-
erated. The resulting basisset 2, , k = 1,...,m + lisgivenby

S.=o0 X1, k=1,.m, Z,, ,=0(m)Xo, (62)

where I is the 2 X2 unit matrix. This representation has
twice the dimensionality of the corresponding C-algebra
one.

IX. DISCUSSION

In this article we have analyzed the relationships
between the various types of Clifford algebras, and we have
proposed a systematic way of generating higher-order alge-
bras from lower-order ones. The generation method itself
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and the steps that were followed in arriving at it provide
some important insights into the interconnectiveness of the
various Clifford algebras of different orders and signatures.
In addition we believe that the approach followed in this
article and the notations and classification scheme that we
have adopted provide a formalism for these algebras that is
particularly useful for physical applications.

APPENDIX A: PROOF THAT EACH EVEN-ORDER
CLIFFORD ALGEBRA HAS ONLY ONE INEQUIVALENT
IRREDUCIBLE REPRESENTATION

In this appendix we present a proof that each even-order
Clifford algebra A4, has only one inequivalent irreducible
representation of dimension 2",

First, let 2, be any elements of 4, like o}, 0;, 0;,...,
{+3,}, which form a group of order 2-2"=N. For any
3, # + 1, we can show that the trace vanishes, Tr 2, =0.
For this end, it is enough to show that there always exists an
element ¥ such that

3,3, +2:2,=0 or 3;3.3;,=—(3;)2,,

(A1)

where (2;)? = + 1 depending on the nature of X . Then
we have

Tr3;3,%; = — (33)°Tr g,
but
Tr2;2,3; =Tr3,(33)* = +(2;)*Tr 3,,

(A2)

(A3)

hence Tr 2,, = 0. For 3, of odd rank, (o, o;, 0}, 0%,...) we
can always choose 2 to be a basis element, X, whichisnota
factor of X,,. For X, even, we choose X, to be a factor of
3 - [Note, for n odd, this procedure fails in the case of the
canonical element o(n) = 0, 0, - 0,.] For both cases it is
clear that
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Ukzw = - 2wa'k' (A4)
From group theory, we have
Sy(a)ya ") =N, (AS)

where y(a;) is the character of any irreducible representa-
tion matrix of element ;. From what has been shown above
we have only one + 1 and one — 1 element contributing to
the sum

22" =y(Ly(1) + ¥( — Dy(—1) =2.Dim*(y),
(A6)

where Dim denotes the dimension of the representation y.
Therefore, we know that the irreducible representation of a
Clifford algebra of order n = 2m must be of dimension 2", as
given by Rasheviski’s method.®

There is another theorem in group theory:

Sr =N,

where n, is the degree or dimension of the irreducible repre-
sentation D, and v runs through all possible different ine-
quivalent irreducible representation of a finite group. In the
case of a Clifford algebra, N = 2 - 2™ and every irreducible
representation of the Clifford algebra is at the same time an
irreducible representation of the associated group. But any
irreducible representation that is at the same time an irredu-
cible representation of the Clifford algebra and the associat-
ed group must be of 2™ dimension. If there were more than
one such kind of representation, then we would have

(A7)

N=2.22m=2%" 4 2™ | other representations,
(A8)

and one possibility is to have two inequivalent irreducible
representations of order 2m with no others. However, this
leaves no room for other representations of the associated
group such as the trivial identity representation that maps
each element onto + 1. Therefore we conclude that there is
only one inequivalent irreducible representation of a Clif-
ford algebra of order n = 2m.

APPENDIX B: EQUIVALENCE OF TWO CLIFFORD
ALGEBRAS A!, AND A,~*

Two Clifford algebras 4 % and 4 =2, which differ only
by one basis element with a different square, can only be
equivalent if the orders of the two algebras are even and the
signature index is

t=2(mod 4).
Proof: Given the two algebras with the basis elements
A4 {0, 05..,0,.}, A% (B1)

which differ only by the replacement of o, by o], where
(0])?= — 3. If A =4 "2, it must be possible to con-

{7}, 05,0, },
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struct within 4 ;, an element w that behaves like ] in 4 ' ~2,
namely, we have the following.

(1) w anticommutes with all basis elements o, through
o,.

(2) w cannot be formed exclusively from o, through o,

because in the case 4 ;- ? would be 4, _, . In others words, o
is not algebraically independent.

Bw'=—0ol=—e

Consider a term 7 of w that contains o; but does not
contain o, as a factor. Then if

ak0T= —Ta'ko, (BZ)
we would have

0,7 =70, (B3)
So, to maintain (1), w must be either

HUJ or Hajsa(n). (B4)

j=2 i=1
The first possibility is excluded by (2), so

w=a(n), (B5)

and when 7 is odd, (1) cannot be true. Finally (3) and Eq.
(24) entail that t = 2 (mod 4). Otherwise, this is impossible
andA ) #A4.72
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Some families of zeros of weight-1 6j coefficients are given, each in terms of four parameters. They
arise from a geometrical investigation of certain Diophantine equations. Some general remarks on
the solutions of Diophantine equations are also made.

I. INTRODUCTION

In this paper we make some remarks of a general nature
concerning an overall appraisal of the problem of solving
types of Diophantine equations; and apply specific number-
theoretic and geometric methods to solving a Diophantine
system that arises in determining nontrivial Racah coeffi-
cients of weight 1. This extends results of Brudno and
Louck.'

A Racah operator (which was originally introduced in
work on spectroscopy) is a linear operator acting on a parti-
cular abstract Hilbert space, and gives rise to the Racah coef-
ficients. See Biedenharn and Louck? for a full discussion,
together with motivation for the importance of their study.
Considerable interest has been shown in the nontrivial zeros
of the Racah coefficients, because these determine vector
spaces belonging to the null space of a Racah operator, and
accordingly give structural information concerning the op-
erator itself. See Racah® and Judd,* who extends the Lie
algebraic method of the former. Koozekanani and Bieden-
harn’ list over a thousand nontrivial zeros of the Racah coef-
ficient, obtained by computer calculation, and Vanden
Berghe et al.° give further examples of nontrivial zeros, again
by exploiting ideas from Lie algebra.

A different approach to the classification of the zeros of
the Racah coefficients has been by Brudno.” Here, it is ob-
served that the explicit expression for each of the coeffi-
cients, as given by Racah,® is an alternating sum, and the
author bases his classification on the number of nonzero
terms occurring in this sum. This is shown to be equivalent
to a classification by weights of the corresponding Racah
operator by Brudno and Louck.’

We introduce notation for the 6/ coefficient {5 © ¢},
which up to sign is equal to a Racah coefficient. The coeffi-
cient is given by a polynomial function in the arguments

a,b,c,d.e, f, which represent angular momentum quantum;

with

a bey_PU+u+v—U J(y+ut+w—1) d(x+y+v+w—2)

d ¢ fl J(y+0)
Equation (1) is equivalent to the Diophantine system
X3+Y3+Z3=U3+V3+W3,

i (x+w)

X+Y+Z=U+V+ W, (3)
under the transformations

X= x—y+2z U=u+4+v—w,

Y= —x4+y+z, V=u—v+w,

Z= u—v—w, W=x4+y+z;

x=4(W-"), u=3(U+"),
1181 J. Math. Phys. 27 (5), May 1986
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numbers; an explicit realization of this polynomial is given in
Biedenharn and Louck,? p. 142. The domain of definition of
a,b,c,d,e, and fis that they must be non-negative integers or
non-negative half integers, satisfying the “triangle condi-
tion” on (a,b,e), (a,c,f), (bd,f), and (c,d,e) [where the
triangle condition on (p,g,r) isthat —p+qg+r,p—q+r,
and p 4+ q — r are all non-negative integers].

An alternative notation for the 6/ coefficient is the 4 X 3
array of Bargmann'®

d+f—b c+f—a c+d—e
[a b e]_ a+f—c b+f—d a+b—e
d ¢ fl ld+e—c b+e—a b+d-r|’

a+e—b c+e—d a+c—f

which has the advantage of displaying clearly the Regge'*
symmetries, corresponding to row interchanges and column.
interchanges. The smallest entry in the Bargmann array is
called the weight of the corresponding 6j coefficient, and is
equal to the number that is one less than the number of terms
in the alternating sum, as mentioned above.

A nontrivial zero of a §j coefficient is now defined tobe a
sextuple (a,b,c,d.e, f) of non-negative integers or non-nega-
tive half integers, such that all entries in the corresponding
Bargmann array are non-negative integers. Since coeffi-
cients of weight 0 possess no nontrivial zeros, then nontrivial
zeros of 6/ coefficients have corresponding Bargmann arrays
with every entry a positive integer.

The first interesting case is that of weight-1 coefficients,
having two terms in the alternating sum expression for the
coefficient. This has been studied by Brudno and Louck,'
with the following results. If {52¢}=0 and is of
weight 1, then by using a Regge symmetry if necessary, it
follows that there exist positive integers x,y,u,v,w satisfying

xp(x+y+u+v+w)=uww, )

J(x+y+u—1) @)

Vy=1(W-X), v=4(U-2),
z=}(X+ V), w=4(V-2).

The authors show that, using symmetry, solutions of (1) are
in correspondence with 3 X 3 arrays of positive integers

k!l m |x

n p ¢q y

r s t z’ 4)
u v w |
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where x = klm, y = npq, z = rst, u = knr, v = Ips, w = mqt,
andz =Xx + y + u + v + w. They invoke a parametric solu-
tion of Egs. (3), due to Gérardin (see Dickson,'? pp. 565 and
713) in 1916:

X=2p"—10pg + 12¢°, U=2pq,

Y=p*—5pg+6¢°, V=pq, (5)

Z= -2’ +9q—6q°>, W=p>—9pq+12¢".
Hence they recover an array (4) given by

-39 1(2p—39) 2 x
-p 1 -9 »
1 j@-29 p-3¢| z’
u v w I

thereby producing a parametrized infinity of nontrivial ze-
ros of weight-1 6/ coefficients (necessarily p is even, and
q>p).

No further results are given, and indeed the authors
state “it appears that the general solution of the pair of Dio-
phantine equations (3) is not known.”! It is the intention of
this paper to investigate these equations more carefully, de-
ducing further parametrized infinities of zeros of weight-1 6/
coefficients (this time with four parameters).

Il. A FIRST SOLUTION

The basic state of knowledge regarding Diophantine
equations seems to be that if you have a particular equation
representing a geometric curve, then there is a well-estab-
lished body of theory and you can expect to say almost every-
thing about the rational and integral points upon it. There is
a major subdivision of cases, according as to the genus of the
curve in question. A curve of genus 0 is said to be rational,
and all the points upon it may be described parametrically.
In particular, all the rational points are known. For curves of
genus greater than 0, there is no polynomial parametrization
of all the rational points (indeed, by recent work of Faltings,
a curve of genus greater than 1 can have only finitely many
rational points), but all the rational points can (at least in
theory) be described fully. The corresponding work in-
volved may, of course, require considerable effort. Consider,
for example, the curve y* = x(x* + 877) where the smallest
rational solution has for its x coordinate a fraction with a 42-
digit numerator! See Bremner and Cassels.'?

If the Diophantine equation represents a surface, then
the theory is far less complete. Certain surfaces are rational,
in that the points of the surface are in one to one correspon-
dence with points of a plane, and all the points on such sur-
faces can be described parametrically. Otherwise, one can
hope to say something about the rational points upon a sur-
face, although a complete description is usually beyond
reach. And if you have any higher-dimensional geometric
object representing a nonrational variety, then very little in
general can be said—in particular, to describe fully all the
rational points is, at present, a hopeless task.

Equations (3) represent geometrically a cubic three-
fold, the object beyond a surface in increasing dimension. It
is thus not clear that a complete description of the rational
points will be at all forthcoming. But not everything is hope-
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less. The intersection of the threefold (3) with a hyperplane
is simply a surface (just as the intersection of a surface with a
plane is a curve) and so one might hope to obtain informa-
tion about the surfaces which lie on (3).

Consider in particular the Gérardin solution (5). As the
ratio p/q varies, the locus is a quadratic curve that lies on
(3). It also satisfies the linear relation

X-U=2(Y-"), (6)

the equation of a hyperplane. Accordingly, the intersection
of the threefold (3) with the hyperplane (6) is a surface,
which we know contains a rational quadratic curve. Since it
contains one rationally parametrizable curve, it is plausible
that it may contain others. To investigate this, transform the
equations by

X=r+2p, U=r-2,
Y=t+p, V=t—p,
Z=s5—-3p, W=s5+3p,

so that the equation of the surface is simply
(r+2p) + (t+p)* + (s — 3p)?

=(r—2p)+ (t—p)’+ (s+3p)°,
ie, p(2r — 352 +1%— 6p*) =0.
The surface is thus reducible, with two components: the
plane p=0 and the quadric surface
2rF — 357 +t*— 6p* = 0. It is easy to find all the rational
points on the two components and hence on the cubic sur-
face. For the plane p=0, the general point is
(rs,tu) = (a,B,7,0) leading back to (X,Y,Z,U,V,W)
= (a,B,7,a,8,7). This rather dull solution to Egs. (3) does
not give any 6j-coefficient zeros, because the corresponding
xp,v,w at (1) satisfy x + w =y + v = 0 and so x,y,», and w
cannot all be positive. However, for the quadric surface
277 + t% = 3(s* + 2p?), the general solution can be obtained
by the parametrization

t+n—2=(1+V=-2)(@+BV-2) (y-6V-2),
s+pV—2=(a+BV-2)(y+6V-2),

i.e., by
r=ay+2p6+py—ad,

s=ay—288,

t=ay+ 286 — 2By + 226,

p= By +aé,
giving

X=ay+286+3By+ad, U=av+2B5—Py—3aé,
Y=ay+285—PBy+3ab, V=ay+285—3Fy+ad,
Z =ay — 286 — 3By — 3aéb,
W=ay— 286+ 3By + 3ab.
In terms of x,y,z,u,v,w, we have
x= —2B6+2By, u=ay+2B5—2By—ab,
= —2B88+ab, v=286+By,
z=ay+ 286 + By + 2a8, w=2P5+2a8,
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corresponding to the 3 X3 array
y—26 B 2 x
e >, )
1 y+25 a+B |z
u v w

Thus, provided a > 28>0, ¥ >8>0, the array has positive
entries, and leads to a four-parameter family of zeros of 6/
coefficients.

Notice that the Gérardin solution is obtained by special-
izing in (7) to
(a,8.7,9)

=l(p—69),4(2p -394 (p—49)4 (p—9q))

What we have done here is to find @/l solutions of (3),
subject to the restriction (6).

lll. MORE GENERAL SOLUTIONS

We can work more generally than in Sec. II. The most
general hyperplane containing the Gérardin curve (5) is

0(X —2Y) + (U -2VF)
+yYX+Y+Z-U—-V—-W)=0,
for constants 8,¢,¥. Thus the most general cubic surface aris-

ing as an intersection of (3) with a hyperplane, and contain-
ing the Gérardin curve, is given by

X3+Y3+Z3 =U3+V3+W3,
X+Y+2Z =U+V+ W,
X-2Y =A(U-2V),

for an arbitrary parameter A (in the previous instance,
A = 1). Substituting

X=Ar+2p, U=r—-2p,
Y=At+p, V=t—p,

Z=s—Ar—At—3p, W=s—r—1t+3p,

Vi: 120 4 (A = 1)(5r+ 81)p?
+pl65% —6(1+ 1)(r+1t)s
+ A2+ 1) (P +6rt +2t7)]
— A=+ - A+ D +0s

+ A%+ A+ ] =0.

A basic geometric result concerning cubic surfaces (see
Swinnerton-Dyer'#) is that there is a rational parametriza-
tion of all the rational points on the surface if and only if the
surface contains a set of two, three, or six skew (i.e., nonin-
tersecting) straight lines, the set of lines as a whole being
defined over the rationals (so a set of Galois conjugates is
allowed, for example). Now in any specific instance, as for
example with V,, it is straightforward although tedious, to
write down the equations of all the straight lines on the sur-
face. Indeed, it is classically known that there are precisely
27 such straight lines.

We do not carry out here these awkward computations,
but restrict as in Sec. II to more specific observations. Notice
for ¥, that the planep = Ocutsintheline{p =0,r = — ¢t}
and the quadric {p=0 S—U+1Ds(r+1)

+ (A2 + A + 1)rt = 0}. In particular, when A = 0, the in-
tersection is the three lines {p =0, r= —1t}, {p=0,
r=s},and{ p =0,s = t}. But when A = 0, ¥, also contains
the straight line {r = 2t, t = 2p}. Thus in the case A = 0, we
have two skew lines { p=0, r =5} and {r=2¢, t = 2p},
each of which is defined over the rationals. This leads with
the appropriate calculations to the parametrization of all
points of ¥, by

r = 25225 — 10a*y6 + a*y* + affy?
— 6aByS + 8aBs? + 4826 — 88767,
s= —a*yb + 5a%*6* + afy* — 6aByd
+ 8aps® + By — 2878,
t= —2a%y6 + 10a%6* + afy* — 6aBys
+ 5aB8® + B2y — 48%y8 + 48757,
p=06(—a* +5a°5 +B* —28%).
In terms of the notation at (4), this corresponds to the fol-

then the resulting cubic surface has equation { lowing array:
a(y —46) + By —9) —4(y—36) a x
} (a(y — 58) + B(y — 26)) 1 —a(y—58)—-B5 |y 8
1 —a*(y — 58) + B*(y — 26) 36 z (®)
u v w I .

The entries are certainly positive when
Yy—26 « é

B 55—y’

, 0, 56 45> 0,
a, B> >y>46> 56—7>ﬁ

and thus again we obtain a four-parameter family of zeros of 6/ coefficients.

It may be that for further rational values of A, the surface ¥, admits a set of two, three, or six skew lines defined over the
rationals, and hence admitting a parametrization of all its points. In each such case there will arise a homogeneous four-
parameter solution to Eqgs. (3) and (1), giving a four-parameter family of zeros of weight-1 6/ coefficients. But we have not

progressed further in this direction.

When ¥, fails to have a rational set of the required number of lines, there cannot arise a four-parameter solution; but there
still may be parametrizable curves on ¥V, affording a homogeneous two-parameter solution (as found originally by Gérar-
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din). Finally, there is no particular reason why one has to restrict attention to intersections containing the Gérardin curve as
we have done above. Any hyperplane intersection of (3) arises in a cubic surface, and one might try analyzing, for example, so-

lutions of (3) which satisfy in addition, say,
X-U=Y-V.

It seems plausible that in this manner one can obtain a large number of parametrized solutions to (3), and hence to zeros of

weight-1 6f coefficients.

As a final summary, we make explicit the formulas obtained at (7) and (8) for the zeros of weight-1 6/ coefficients.
Substituting the values given by (7) into (2) produces the 6/ coefficient

{abe
d ¢ fI’

with

a=}(ay—ad+Py+26—1), b=}(ay+2aé—2By+265—-1),

(9

(9)

c=}(ab+By), d=ab+By, e=}(3ab+3By—2), f=}(ay—285-1),

corresponding to the Bargmann array

28(y —6) 8(a—2pB) 1
a(y—=8))—1 y@a-28)—-1 (y—=8)(a—28
2(aé+By) —1 3ad -1 28(a+PB)
3By -1 (ad+By) —1 B(y +25)

Since (a,8,7,6) and ( — a, — 8, —
a > 0. Then the entries of (10) are positive if and only if
a>28>0, y>6>0.

Further, if
aBy0eZ, a=y=1mod2, B=06mod2,
then g, b, ¢, d, e, and f at (9') are all integers.

(10)

— &) correspond to the same coefficient, we may without loss of generality assume that

(11)

(12)

Consequently, (9) and (9'), subject to conditions (11) and (12), provide an explicit realization of a parametrized family

of zeros of weight-1 6/ coefficients.

As specific numerical illustration we give the nontrivial zeros arising from (9), (9°) in which the arguments are at most 20

(with corresponding a, 3, ¥, 6 in following parentheses):

6 3 3 e {5 5] s [ 55} cann
I e A B PR RS
[12 6 16] 17D {910155 o] 13D [1172 s 1167] (7,1,5,1);
02T o {1,120 ey,

In similar manner, the values given by (8) may be substitut-
ed into (2), resulting in an explicit parametrization for zeros
of weight-1 6 coefficients. But the arithmetic is now much
more cumbersome, and we refrain from giving any details.
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It is well known that there exists an equivalence of R® vectors and spinors, which has its roots in
the rotational symmetry of the Dynkin diagram for D,. We endow R® with a real action of
SO(4,4), and restrict to SO(3,1). Under this restriction the R® spinor decomposes into the
direct sum of two real Dirac spinors, while the R® vector decomposes into a real space-time vector
plus four real scalars. The equivalence is preserved under this restriction; it is shown that it is
realized in the (exceptional) equivalence of a complex Dirac spinor and a complex space-time

vector.

|. INTRODUCTION

For pedagogical reasons we shall formulate the excep-
tional equivalence described in the abstract within the con-
text of a problem that arises in classical mechanics. In the
setting that we describe, we have no anticommuting opera-
tors that might, perhaps, obscure the underlying geometrical
relationship that exists between a complex Dirac spinor and
a complex space-time vector. However, the implications of
this relationship are obviously relevant to the discussion of
particle content of multiplets in grand unified and supersym-
metric field theories.

In Ref. 1 a Lagrangian model of a classical electron with
spin, possessing an intrinsic magnetic dipole moment and
vanishing (in a rest frame) electric dipole moment is formu-

lated. In this model, a real-valued eight-component O(3,3)
spinor ¥ is employed to carry the spin degrees of freedom.
Several physical observables that, in part, specify the classi-
cal state of the electron are constructed from #. These in-
clude the spin tensor of the electron, as well as an orthonor-
mal space-time frame that is transported along the worldline
of the particle. The timelike member of this tetrad is forced
to be always parallel to the four-velocity by subjecting ¥ to
certain constraints, These constraints lead to complications
in quantizing this theory.

Accordingly, as a first step in the quantization program,
it is natural to attempt to separate the dynamical degrees of
freedom possessed by ¢ from the constrained components.
In this paper we investigate a decomposition of # into com-
ponents with respect to a spin frame, which, when the spin
frame is chosen appropriately, may aid in the identification
of free versus constrained components. (This identification
will be taken up in another paper.) More explicitly, we shall
regard ¢ as an element of the vector space R®, which we
endow witha SO(4,4) invariant metric. We call the result-
ing manifold ¥ ,. [The O(3.3) representation alluded to
above is contained in the real irreducible representation of

SO(4,4) carriedby V', ,.] Wepicka V', , frame and resolve
¢ into components with respect to this frame. One could
ordinarily expect that the resulting eight spin frame compo-
nents would transform as eight scalars under the Lorentz
group. However, we originally employ a formalism in which
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four of these eight frame components comprise a Minkowski
space-time vector, while the remaining four spin frame com-
ponents are scalars. The simple reason that we can make the
transition from a set of four real scalars to a real space-time
vector is because a spin frame on V,, directly defines a
space-time frame E ¢, , and thereby provides the mechanism
for going from scalars to vector (and back again) via
We=W®E¢, (and W, = W,E¢,)). See Sec. III for
details.

In the next section we define reduced generators of the
basic spinor representations of SO(4,4). These generators,
we call them tau matrices, satisfy a remarkable identity,
which is formulated in (2.41). This identity leads directly to
the proof of the exceptional equivalence to which this paper
is devoted: We shall explicitly prove that there exists a one-
to-one invertible linear mapping from a pair of real Dirac
spinors to a pair of real Minkowski space-time vectors.

Il. SPINOR REPRESENTATIONS OF SO(4,4)

We shall construct a real reducible 16 X 16 matrix repe-
sentation of SO(4,4) utilizing the Clifford algebra ap-
proach of Brauer and Weyl.? We shall see, as is in fact well
known from the general theory, that there are two inequiva-
lent real 8 X 8 irreducible basic spinor representations DV
and D@ of SO(4,4).Weassume that the real spinor ¢ that
carries the spin degrees of freedom in our model transforms
under D'V [although in practice, we always restrict our at-
tention to a Lorentz subgroup of SO(4,4) ]. To construct
this representation of SO(4,4) we define generators o*/,
A',B’,... = 1,...,8 of the pseudo-Clifford algebra C , , thatan-
ticommute and have square + 1. The generators of

SO(4,4) are defined, up to a constant factor of — J, as the
commutators of the . However, prior to the explicit con-
struction of a representation of the o, it is convenient to
first define the generators of C; ;, which then may be used in
the representation of the o*'. Accordingly, let ' < I’
A,B,... = 1,...,6 and a,b,... = 1,...,8 denote six real 8 X8 ma-
trices that generate an irreducible representation of the
2*+3_dimensional pseudo-Clifford algebra C,;. The I'*
verify
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T2 4 T8 = 2 g7, 2.1)
where
gAB__‘gAB=diag(1’1’l’_1)_1,"‘l), (2.2)

and I denotes the 8 X 8 unit matrix and is sometimes sup-
pressed. We shall also need

I’ =T'I°rrorers, (2.3)
which verifies
I’ + MM =0 (2.4)
and
(I'"?=1 (2.5)
The generators of the basic spinor representation of
SO(3,3) are
M4 = —1[T4I?], (2.6)

and are fully reducible to the direct sum of two real 4 x 4

inequivalent irreducible representations of SO(3,3) (see
. Ref. 3).

We introduce a covariant (resp. contravariant) rank
two spinor o, <> o (resp. 0> <> 0™ ') to lower (resp. raise)
the SO(3,3) spinor indices a,b,c,... as follows: We require
that o satisfy

FMo= — oI, 2.7

where the tilde denotes transpose. Then, from (2.3) we have

o= —ol”, (2.8)
and from (2.6)

M35 = — gM“®, (2.9)
whence, if Me SO(3,3), then

Mo=oM ™}, (2.10)

so that o is invariant under SO(3,3): 0+ MoM = o.

If we set & = o, where @ = + 1, and examine the sym-
metry properties of a set of 64 linearly independent real 8 X 8
matrices, then we find that the 28 linearly independent real
8 x 8 matrices {04,017, ol“T7, oM #%} satisfy T=— - 6T
(e.g, THo=60T"= GoTA= — o, hence oI oTA
= — BoT*), whereas the 36 linearly independent real 8 < 8
matrices {0, ocT"M*2, oT*I'’T'°, 4 < B < C} verify T = 6T.
Since there are 28 (resp. 36) skew-symmetric (resp. sym-
metric) linearly independent real 8 X8 matrices, we con-
clude that 8 = 1, so that ¢ is symmetric. Hence, for example,
ol & o, I, =I'4, = — I'4 is skew symmetric.

Clearly, all but one of these 64 matrices has vanishing
trace.

Lemma 2.1;

tr T =0, for Te{I"™,I"",I'I'7, M 45,

I’'M“2, TT®T¢, A<B<C}.

From (2.1) wesee that (I'*)2 = — I = (I'%)? = (I'%)?,
so that we may assume that each of these matrices is skew

symmetric: I* = — T %= — I and = — I'°. Simi-
larly, since (I'')?=1=(I'*)*= ()%, we may assume
that each of these matrices is symmetric: I'! = I'!, I'? = T?,

and I = I'2. Therefore, from (2.7), o should commute with
the skew-symmetric matrices {I'*,I">,I"%} and anticommute
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with the symmetric matrices {I"",['2,I"*}. Hence one possi-
ble choice for o that satisfies (2.7) is ¢ = [*I"°TS.

We prove a useful identity satisfied by the I'.

Proposition 2.1: Let T <> T'§ be an 8 X 8 matrix with the
property that oT'is symmetric, i.e., T,, = 0, T, = T,,, but
being otherwise arbitrary. Then

It T=T+ T, IT* +T71T, (2.11)
where 'y =g ,, T2, and I denotes the 8 X 8 unit matrix.

Proof: Since (2.11) is linear in T, we verify it in turn for
T=ILT'M*8 andT“T®’I'“, 4 <B<C (this set of 36 linear-
ly independent real 8 X 8 matrices verifies oT =0T ). We
note that (I'*) ~! =T, so that I',I"* = 61, and ', I"?
= (=TT, +254)T®= —4r4,

(i) T=LiuwT=8I=I4+T,M*+T7IT7 =8I

(ii) T=T"M"*2 or equivalently, T = I'"I'?I"7, 4 < B.
Here, repeated use of (2.1) and (2.4) yields T .II"’T''T¢
= — 2I'“T"®T"7, which, when substituted into (2.11), gives

Itr T*T®I'7 =0 (by Lemma 2.1)
=27 — 28’ + r'r4r*rr’
=0.
(ili) T=T*T'®’Ir, 4 <B<C.
Here repeated use of (2.1) yields I' , T“I"®I'“T"? = 0; hence
I'tr TT'®I'° = 0 (by Lemma 2.1)
— FAFBFC + F7FAFBFCF7
=I"I’r’ - rrre=o. B
Inordertoconcisely definethe o', 4 ",B",... = 1,...,8, we
introduce a new set of real 8 X 8 matrices. We define
™ = (17, -17,0)
and
™ =(-111",0), (2.13)

where, as before, I denotes the 8 X 8 unit matrix. By direct
evaluation we find that

(2.12)

Ho=0m. (2.14)
In index notation (2.14) is

T =74, (2.15)
In virtue of (2.1) we also find that
AP 4+ BT =2GAE =P L A (2.16)
where

83,1 0
G*' =G,y —( o —83,1) (2.17)

and g;, =diag (1,1,1, — 1) is the metric on Minkowski
space-time M, (or M, ). Here G (resp. G —') will be used to
lower (resp. raise) primed uppercase Latin indices.
Turning now to the construction of the real reducible
16X 16 matrix representation of SO(4,4) we define the
generatorso? ,4',B’,... = 1,...,8 of areal irreducible 16 X 16
representation of the pseudo-Clifford algebra C, , according

to
. 0 r“’a“)
ot _(0'1—"" 0 . (2.18)
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Using (2.16) we find that the o' verify
OAIO'B' + 0—810*{' = Hléx!éGA'B"
The generators N“ 2’ of a real reducible 16 X 16 representa-
tion of SO(4,4) may be defined by
— AN = [0*,0%). (2.20)

Using (2.19) repeatedly, one finds that the N4 satisfy the
commutation relations for S0O(4,4). Using (2.18) and
(2.14) we find that the N*'®" may be written as

(2.19)

NAB (D(n (gu By oo (ONA_B')) , (2.21)
where

— 4D D(NAEYy = AFE _ B (2.22)
and

4D® (NABy =778 784, {2.23)

which is the direct sum of two real inequivalent 8 X 8 irredu-
cible representations of SO(4,4). The two representations
are not equivalent because, if P is a linear automorphism of

SO(4,4) that defines the conjectured equivalence, then
D@ (NA®)p=pDV(N4?). But from (2.22), (2.23),
(2.12), and (2.13) we find that

~ D@ (NABy = pO(N4By = M 45, (2.24)

~DONAy =D N7y = — 4, (2.25)

DONA%) =D D(N4%) = — P17, (2.26)
and

DON™) =DD(N®) _._,.ir", (2.27)

Hence from (2.25), P must satisfy [“P= — PI'**. Using
(2.3) we see that this implies that I’P = — PI'’; but (2.27)
demands that TP = PT"’, and therefore Pis 0, the represen-
tations are not equivalent.
In order to prove that o is invariant under the action of
SO(4,4) we define a covariant rank two SO(4,4) spinor =
by

I = 30" (2.28)
Equations (2.28) and (2.20) imply that
N4EL= _3IN4F, (2.29)

so that 3 defines a SO(4,4) invariant bilinear form. Since

. 0 ort’
a2, Y, 50
ol 0 (2.30)
we find that one solution to (2.28) is
o 0

2_(0 a—l)‘ (2.31)
Hence both D " and D  preserve o

DWg=gDD~1! (2.32)
and
1187 J. Math. Phys., Vol. 27, No. §, May 1986

D®g ' =g 'D® ], (2.33)
where D = D( g), ge SO(4,4) is implicit.
A canonical 2-1 homomorphism  SO(4,4)

— SO(44), SO(44) DgrsLe SO(4,3) maybe defined
by

164 = tr N ~'0* Nay.,
where LL# . and

D (l)( g) 0 )
v=vo=(""; D@ (g))
Because Le SO(4,4), the metric G of {2.17) is invariant
under automorphism by SO(4,4): G— LGL =G,
LA’('“GA'B.LB'Da =GC»DH (2.35)
Using (2.20) and (2.34), we find that under the action of
SO(4,4)
L4 50" =N ~"'0*N. (2.36)
Of course, we may also deduce this relationship using the
fact that the L4 '5.0"  satisfy the same anticommutation re-
lations as the o, and the fact that there is only one irreduc-
ible representation of degree 16, up to equivalance.
Using (2.18) in (2.36) we find that, under the action of
S0(4,4),

(2.34)

LA =D '"D;! (2.37)

and

L4, 7 =D,7D, (2.38)
where D = D( g) is again implicit, with L given by (2.34),
and D ¥ = D,, D ¥ = D,. By right multiplication of (2.37)
by 7., and left multiplication of (2.38) by 7., and then
summing the resulting expressions, we find that

UL . =D ' Dy %o + 1. D7Dy (2.39)
Taking the trace over spinor indices yields
8L*'y = tr D,7 D7y, (2.40)

since
trD YA DS Ty =troD ' D Th07!
== tl‘ 'rB'D{iA ’Dl'

If T>D,TD ' = T’ under SO(4,4), and 0T = oT,
then by (2.32), oF =oT ‘s the symmetry property
Tso = T, is preserved under the action of SO(4,4). More-
over, from (2.37) and (2.38) we see that the 7 matrices are
numerically invariant under combined SO(4,4) and
SO(4,4)  transformations, = For  example, 74

= L4',.D,® D,. This observation leads us to prove, analo-
gous to (2.11), the following proposition.

Proposition 2.2: If T is any 8X8 matrix satisfying
&¥'=oT and transforming according to 7+—D,TD ! un-
der SO(4,4), then

T T =Itr T,
Proof: From (2.11)-(2.13), we have

(2.41)
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7,7 = -, '’ +I'IT" 4+ T
=(I'TT") + T (C’TT)M + T/(I1T7) 17
=Iul’TT =1Itr T.
Equation (2.11) is applicable because
(oT’IT"YT = oI TT. ]
For completeness we prove the following proposition.
Proposition  2.3: Let DV (N4®)=D%® and
DP(N4®y=D%"; then

FoDi P 1% = —4DA" (2.42)
and

7 DAPT = —4D{P (2.43)

Proof: Using (2.16) we find that

FoDAB = _DABF., 4GB LT (2.44)
and

D{%ro. = — 1o DAR 4 848 — 824, (2.45)

Right multiplication of (2.44) by 7°" and summing over C’
yields (2.42); right multiplication of (2.45) with 7" and
summing gives (2.43). B

Under SO(4,4), using (2.37), (2.38), and (2.35), we
find that

7, T =D7, (D,ID; ) D,
or

7, (D, D Y =D;'7,. D,
If6T = oT, then using (2.41) we find that D ;7 '7,. Tr* D,
=Itr T=7, T and hence

7, (D,TD )7 =7, Tr", (2.46)

when o7 = oT. We shall return to this relationship in the
next section.

lil. EXCEPTIONAL EQUIVALENCE

In this section we shall use the identity of Proposition 2
to provide a geometrical interpretation of the spinor ¥ intro-
duced in Sec. I, which is, in fact, a statement of equivalence
of two real Dirac spinors, and a real space-time vector plus
four real scalars.

Let ¥, , denote the real pseudo-Riemannian space ob-
tained by endowing R® with the SO(4,4) invariant metric o
of the previous section. We assume that ¥, 4 carries the real
irreducible representation D ¥’ of SO(4,4). Hence eV,
is a real eight-component (reduced) SO(4,4) spinor of the
first kind.

We pick a real (constant) spinor Je¥, , normalized so
that

JoJ=1, 3.1

but being otherwise arbitrary, and define a real 8 X 8 matrix
Tby

T=JJo. 3.2)
We note that

a Y]

oT =0T, (3.3)
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and
trT=1, (3.4)
the latter property following from tr T'= tr J Jo = JoJ = 1.
For later use we remark that
Jor''7y.J =64,
which is a consequence of the fact that
Wort 7y 0 =2(Jor' 7y NT=2TFp. 7 0]
=2ory 7J [using (2.14)]
=Tl 7y + 757}
=264 Jo] = 254..
We substitute (3.2) into (2.41) to obtain a resolution of
the identity on V, ,:
I=%,JJor". (3.6)
Here we have used the facts that oT = 0JJo is symmetric,
and tr 7= 1. From (2.46) we see that this resolution is pre-

served under the action of D ‘¥’ of SO(4,4).

We may obtain a revealing geometrical interpretation of
our spinor ¥ as follows: Let YV, , be arbitrary; then using
(3.6) we consider

Y=Ip= (T JJor* YV =7,J(Jory),

(3.5)

that is

V=7, JZ", (3.7)
where

Z* =Jor''y = got' J. (3.8)

In order to physically interpret this result, we restrict
our attention to a SO(3,1) C SO(4,4) subgroup. Under
this restriction ¢ decomposes into the direct sum of two real
four-component Dirac spinors. The Z“' comprise a real
space-time vector Z °, and four real scalars {Z %,Z%,Z27,Z 8}
under this restriction. Then (3.7) gives the vector and scalar
components of ¥ with respect to the V,, frame {7,.J,
A’ =1,...,8}, these components being given by (3.8).

On the other hand, suppose that we are given quantities
Z*', and use them to define a spinor YV, , according to
(3.7). This map is clearly onto, since an arbitrary yeV, 4 is
the image of a Z“*' given by (3.8). In fact, the map (3.7) is
the inverse map of (3.8). To see this we substitute for ¢ from
(3.7) into (3.8), and obtain an identity:

Z4 =Jor* Y =Jor* (75 JZ*') = Z% Jor" 7.0

=Z%84 [using (3.5)] =Z1.

Therefore we find that the maps (3.7) and (3.8) definea
one-to-one invertible linear correspondence between

SO(4,4) spinors ¥ and the quantities Z*'. [Using (2.37)
one can easily show that the Z*  do not transform as a
SO(4,4) vector. Instead the Z# may be seen to comprise a
SO(3,4) vector-scalar pair.] This relation is simply a state-
ment of Cartan’s principle of triality.*® It is a special case of
the well-known equivalence of R® vectors and spinors.*®

We emphasize that the relations (3.7) and (3.8) are of
importance in their own right. They assert the equivalence of
¢ and Z*. If we restrict our attention to

0(3,1) C SO(4,4), this is a statement of the exceptional
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equivalence of a pair of real Dirac spinors (i.e., ¥) and the set
of real O(3,1) tensors {Z,Z%Z¢27,Z"}.

We may state this exceptional equivalence in a slightly
different fashion. Let us write the spinor JeV, , that gives
rise to the ¥, , frame {7,. J} in a form in which the decom-
position of SO(3,1) C SO(4,4) into a direct sum of irre-
ducible 4 X 4 representations is explicit:

A
=(3)

£
Here A and £ are real four-component Dirac spinors; £ trans-
forms inversely to A under SO(3,1). Since JoJ = 264 = 1,

as is well known, J determines an orthogonal space-time
frame E ¢, given by

(3.9)

E%, =2%y°4, (3.10)
EY, =2%7r4, (3.11)
& =n"—m", (3.12)
and
@, =m®+n° (3.13)
where
m*= — EyPe '€ (3.14)
and
n® = Aey°A. (3.15)

Here, the 7* and 7 are the usual Dirac matrices (in a real
representation), and e is the symplectic form on Dirac space.
With the space-time tetrad so defined, we can take the sca-
lars Z**# and form the vector

We may accordingly reformulate the exceptional equiv-
alence of ¢ and Z“' as the following theorem.

Theorem: There exists an exceptional equivalence of a
pair of real Dirac spinors and a pair of real Minkowski space-
time vectors.

Corollary: There exists an exceptional equivalence of a
complex Dirac spinor and a complex Minkowski space-time
vector.

IV. CONCLUSION

It may be of interest to compare the spinor decomposi-
tion (3.7) with the realization of a Dirac spinor as it appears
in the Dirac-Kihler formalism,*'? namely, as a differential
form that is defined as follows: Let ¢ be a Dirac spinor and ¥
be a 4X 4 matrix whose first column is ¢ and whose other
matrix elements are 0 (more generally, one may take the
columns of W to be artibrary Dirac spinors). It is customary
to assume that W is an element of the (in general, complexi-
fied) Clifford algebra generated by the ¥ (see Refs. 11-13).
Accordingly, ¥ may be expanded as a linear combination of
a linearly independent basis of this 16-dimensional Clifford
algebra. We shall define a convenient basis in terms of ,, the
4 X 4 unit matrix, and Dirac’s y*# matrices.>'*

Let "2 = —y?4, 4, B,... = 1,...,6, be defined as in Eqs.
(12)-(14) of Ref. 3, this representation being given explicit-
ly in Table I. Asis well known, — } y*® are the generators of
a real 44 irreducible representation of SO(3,3). More-
over, the { 7,, 7*?} comprise a linearly independent basis for
the Clifford algebra generated by the y*=y"%.

Clearly, any 4 X 4 matrix ¥ admits a decomposition

W“=E‘('M)Z‘+". (3.16) \I’=¢070+§¢A37’w, (4.1)
TABLE L. The y*? matrices.
0 0 0 —1 00 1 0 01 0 0
» [00 -1 o0 " 000 —1 s f-10 o0
01 0 0 100 0 00 o0t
10 0 0 010 o) 00 —1 o/
010 o 0 0 1 0Y 00 0 1)
w |[-1 00 o “ 0 0 0 1 " 00 —1 0
000 —1 -1 00 O 01 00
001 o0 0 -1 0 0/ 10 00/
00 —1 0 0 0 o0 -1 -1 0 0 0
w | 00 o1 wl 0 0o -1 o0 w | 0o -1 00
Y"“I-10 o0 o0 =1 o -1 o o =1 o o1 0
01 00 -1 o0 0 o o 00 1/
0100 -1 0 00 0 0 o0 1
1000 01 00 0 0 —1 0
15 _ 25 _ 35 _
L L 00 —1 0 L 0 -1 o0 0
001 0 00 01 1 0o 00
1 0o 00 01 o0 o0 0 0 —1 0
0 -1 00 10 o0 0 0 0 0 —1
16 _ 26 _ 36 _
Y 0 0 -1 0 Y 00 o0 —1 £ -1 0 o0 o
0 o0 o0 1 00 -1 © 0 -1 0 0
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where the 16 {¢,,1,5 } are, in general, complex functions on
space-time given by

4ipp=1tr ¥
and
4,5 =tr ¥y . (4.3)

It should be clearly understood that the expansion (4.1) can
be formulated for any 4 X 4 matrix, regardless of its particu-
lar transformation properties under SO(3,1) (such as an
electromagnetic field tensor, a ¥ matrix, an energy momen-
tum tensor, a matrix whose columns are Dirac spinors, and
so forth). As such, the coefficients ¢,5 do not possess, in
general, any simple transformation properties under
SO(3,1).

Let us consider the case that the columns of the 4X4
matrix ¥ are Dirac spinors. In this case one sometimes
writes the expansion (4.1) as'"!?

\Il = '/’070 + '/’aya + % 'ﬁaﬂ’ﬂﬁ
+ VYV + 0¥ (4.4)

where }’a = 7/16, 1’5 = 7’56’ }’GVS = 705! ¢a = ¢a6’ ¢a = ¢a5’
and ¢,=1s. Since under the action of SO(3,1),
¥ ¥ =S¥, Se SO(3,1), and not ¥ — SWS !, the ¢,
cannot be the components of a four-vector. Nevertheless,
some authors associate with W a differential form
Yo + ¥y dx* + {5 dx* A dx® + - inspite of the fact that
¥, dx*hasno SO(3,1) invariant meaning. Equation (4.4)
does not express the equivalence of a Dirac spinor with a set
of space-time tensors, and should not be confused with the
exceptional equivalence of (3.7) and (3.8).

We conclude this paper by giving a concrete real irre-
ducible representation of the tau matrices. Let

s s, (1 0)
T‘TS‘I_(O VA

(4.2)
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and 7 = — 71, ford’' =1,...,7. We set

—1 0)
T __
T_( o 1/

Put6=1,5=2,and4=3".Forh,j, k=1,2,3, wedefine
e.hijj:( 0 T’hk)

P 0
and
wwr=( 8 T
With

oo (O 1)
“\t o/
one may readily verify that this concrete representation of

the tau matrices satisfies the defining relations (2.14) and
(2.16).
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The relationship between the hypersurface-homogeneous slicing of an exact power law metric
space-time and slicings adapted to spatial self-similarities is discussed in a group theoretical

setting,

Exact power law metrics, recently introduced by
Wainwright' and generalized by Jantzen and Rosquist® are
four-dimensional space-time metrics possessing a transitive
group of homothetic motions® or “‘similarity transforma-
tions.” These metrics arise naturally in the qualitative analy-
sis of the general relativistic dynamics of spatially homogen-
eous and spatially self-similar space-times as singular points
of a Hamiltonian system of ordinary differential equations
for conformally invariant variables.* Starting with a spatial-
ly homogeneous or spatially self-similar space-time, the exis-
tence of a homothetic Killing vector field not tangent to the
orbits of the three-dimensional symmetry group leads to a
simply transitive similarity group of the space-time. The
most familiar class of such space-times is the Kasner solu-
tion,”> an exact solution of the vacuum Einstein equations
that plays an important role as an asymptotic solution dur-
ing certain phases of the evolution of more general spatially
homogeneous or spatially self-similar space-times.

The simply transitive case may be treated in exactly the
same way as the space-time-homogeneous metrics studied
by Ozsvath® and Farnsworth and Kerr.” The space-time
manifold may be identified with the four-dimensional mani-
fold of the symmetry group and the group action with the
natural left action of the group on itself by left translation.
The isometry group of the space-time is necessarily a three-
dimensional subgroup® acting simply transitively on its or-
bits, a family of three-dimensional hypersurfaces that are the
right cosets of the isometry subgroup. The space-time is
therefore hypersurface homogeneous® and admits a pre-
ferred slicing, namely by the family of orbits of the isometry
subgroup. The object of this paper is to discuss other possible
adapted slicings of such space-times, namely by the orbits
(right cosets) of nontrivial three-dimensional similarity
subgroups, when they exist. These subgroups are related to
the original isometry subgroup by a certain family of Lie
group deformations. The relationship between these various
subgroups provides a group theoretical procedure for find-
ing the hypersurface-homogeneous slicing of the space-time
associated with a spatially self-similar exact power law met-
ric.

Let H, be the similarity group with Lie algebra A, of left-
invariant vector fields. Let %, be the Lie algebra of right-
invariant vector fields, the generators of the left action of H,
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on itself by left translation, and let {e, } and {2, } be bases of
h, and h,, respectively, which agree at the tangent space at
the identity of the group. Let the dual spaces 4 * and / ¥ be
identified with the spaces of, respectively, left-invariant and
right-invariant one-forms on H,, and let {&»*} and {&*} be
the respective dual bases defined by w”(eg) =6%

= & (&5), where Greek letters run from 1 to 4. Both {e, }
and {2_ } are global frames on H,. One has

[ea'eB] = Cyaﬂer’
[e.65] =0,

do® = —}C% o’ o,

do®=}4C%, P NG .

The similarity condition on the Lorentz metric g

£§ag = 2fag ’ (2)

where f, are constants, not all of which vanish if H, is a
nontrivial similarity group as assumed, defines a nonzero
right-invariant one-form f=/f,&*. From the identity
£ix.y1 = [£x,£y ], one immediately derives the conditions

foC%, =0, (3)
which has the following consequences for the one-form f£:

df=1f,C%, @ Na"=0,

£, f=f,CPu? = 0. @
The first relation shows f to be a closed one-form and, in the
case in which H, is simply connected, exact as well. The
second relation shows f to be invariant under the coadjoint
representation of 4, on 4 ¥ and since A, generates the left
translations, f'is left invariant and hence bi-invariant. Since

e, and &, coincide at the identity of the group, f has the same
components in either basis

[€ai2s] = — CTap?y

(n

f=f0% =f,0°
ehinh?={y,0%y,C%, =0, (y,)eR*}. (5)
One can always choose the basis so that £, = §%,, in
which case C*5, =0 and the only nonzero structure con-

stant tensor components are of the form C*,. and C°,,,
where Latin indices run from 1 to 3, leading to the relations
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£é,g =0, £§.g =2, (6)
and
(7a)
(7b)

Thus the {¢, } span an isometry Lie subalgebra to which the
vector fields [é,,2, ] belong, while bracketing by é,, already
an inner derivation of the Lie algebra §,, becomes a deriva-
tion of the Lie subalgebra A, = span{é, }; let G, be the sub-
group of H, that corresponds to this Lie subalgebra. One can
add any linear combination of the vector fields {&,} to &,
without changing (6), while (7b) changes by the addition of
an arbitrary inner derivation of the Lie subalgebra g,

[é4+ycéc!éa] = - (Cb4a +yccbca)éb . (8)
The essential part of the matrix (C®,, ) is therefore equiva-
lent to an outer derivation of g,. Recall that the space of
outer derivations of a Lie algebra is the vector space quotient
of the Lie algebra of derivations of that algebra by the Lie
subalgebra of inner derivations of that algebra (adjoint
transformations).

If we assume H,, is simply connected, then the closed bi-
invariant one-form f= &* is exact and therefore &* = d¢
(which implies é,§ = ¢,{ = 1 by duality). The integral sub-
manifolds of &*, namely the hypersurfaces £ = £, , are ex-
actly the orbits of the action of the isometry subgroup G;,
namely the right cosets of G, in H,. Note that &* is also
invariant under the basis transformations &, — &, + y°é,,
which leave (6) invariant.

Except for a few special cases discussed by Eardley,® a
space-time metric g with a similarity group is always confor-
mally related to a metric that is invariant under the similar-
ity group

g=ewg(0): £:.80 =0. (9)

From (6) one has e, = 1, €,4 =0, so one may assume
¥ = §. The metric g, is space-time homogeneous and is a
left-invariant metric on H,, which therefore may be ex-
ptessed in the left-invariant frame {e, } with constant com-
ponents

[éa’éb] = - Ccabéc ’

[p.] = — Cu, -

80, =80as®@*®0®, d(gyap) =0. ) (10)

Suppose one considers the change of basis of 4,,

£, =&, +bé, =0, (11a)

E, =2, o*=a"—b,a°, (11b)
where the b, are constants satisfying

b.C% =0, (12a)

b.Cyby=0. (12b)
A simple computation shows that

[g—a’éb] = —(C — Cc4[abb 1)3‘:’

[E‘t’éa] = '—Cb-tag—b ’ (13)

dé* = —b,C%,*N&*, 3*Ad3*=0,
£:8=2b,8.
Thus the {£, } generate a three-dimensional similarity sub-

group H; whose three-dimensional orbits (right cosets) are
the integral submanifolds of the one-form &,. This new slic-
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ing of the space-time is adapted to a “hypersurface self-simi-
larity” of the metric, the natural generalization of Eardley’s
term “spatial self-similarity®” to the case where the causal
nature of the hypersurface is arbitrary.

The space

g3ngt = {r,@y.C% =0, (7,)eR’} (14)
(when its elements are restricted to the subgroup G;) is the
space of closed or equivalently bi-invariant one-forms on the
subgroup G, or equivalently, the subspace invariant under
the co-adjoint representation of G; on the dual space to g, or
&,. Since &4 acts as a derivation of the Lie subalgebra g,, with
matrix ( — C°,, ), it maps the space g¥n g¥ into itself, easily
verified by an application of the Jacobi identity. The condi-
tion (12b) is equivalent to the requirement that (b, ) be an
eigenvector of the matrix (C%,, ):

b,C*%, =6b, . (15)
This guarantees that b,&° remain bi-invariant under the Lie
algebra deformation (11a) of g, into /,. When the eigenval-
ue @ is zero, then &* is also bi-invariant on H,, and, assuming
simple connectivity, also exact.

The classification of four-dimensional similarity groups
H, for a fixed isometry subgroup G, is equivalent to a de-
scription of the quotient space of the space of outer deriva-
tions of g, by the natural action of the automorphism group
of 2,. In more explicit terms this classification is just a de-
scription of the equivalence classes of derivation matrices
(C°,, ) under the combined action of the group of matrices
that leave invariant the structure constant tensor compo-
nents C*,. and the addition of adjoint matrices associated
with these structure constant tensor matrices

Co% —A%A4 "% (Cy +y°C°y),
A°,C AV, 4% =C",, |

(16)

The isometry subgroups G, may be classified according
to the Bianchi-Behr classification.'® Only nonsemisimple
groups G, (of Bianchi types I-VII) admit nontrivial spaces
23n g%, similarly only these types of groups may act as non-
trivial self-similarity groups H;. Suppose one has a spatially
self-similar exact power law metric space-time with spatial
self-similarity group H, and simply transitive similarity
group H,. Knowing the Lie algebra structure of H, one can
work backward from (13) to find the Killing vector fields
and hence the slicing by homogeneous hypersurfaces. The
inverse of the transformation (11) then describes the rela-
tionship between the original spatial self-similarity group
and the isometry group, which are connected by a family of
self-similarity subgroups. Any one of these subgroups of H,
may be used to slice the space-time; clearly the isometry
group is the preferred member of this family of subgroups.

To make this discussion more concrete, it is worth ex-
amining an explicit example. Consider a spatially self-simi-
lar exact power law metric expressed in coordinates adapted
to the orbits of a Bianchi type VI, subgroup H; of the full
isometry group H,~R* on which {x',x*x*A} are taken to
be global coordinates.!! Using the logarithmic time variable
A =In t, where t is the usual cosmic time function, and the
symbol e°, for the 3 X 3 matrix whose only nonzero entry is
a 1 in the b th row and ath column, this metric has the form
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g= — e 0! +5,0°00°,
W=e"dt=e"*"dA,

(Q°) =T HBo(gry an
(0*) = [exp{[(s — DA — ax’]I® + (g4 — x*)k3}

dxl
+ Me32 + N031] (dxz) ’

dx3
where

I? = diag(1,1,0), B, = diag(8 :O)ﬂ %o) B %o)) ’

k) = —go(e'; +¢€%). (18)
The quantities {8 %, ,5,9.M,N;a,gp;b} are constants and
h = — a’qq 2 is the group parameter specifying the Bianchi
type of H,, while {0 ®,dA} are a basis of left-invariant one-
forms on H,.

The left action of the subgroup H, on H, is generated by
the right-invariant vector fields

{5‘1)‘5’2,;—3} = {81’32)33 + a(xl al + x2 a2)
- qo(x2 3, +x! )},

which satisfy the final relation of (13) with b, = b5°,. Note
that , and &, are Killing vector fields and, when b #0, £, isa
homothetic Killing vector field. The remaining linearly in-
dependent right-invariant vector field is associated with the
transformation

(x'x%x*A)
_ (xle(aq— (s— l))§, x2e(ﬂq— (s— 1))§,x3 + qg,,{ + ;) .
(19)

under which the metric scales by the constant factor
(1 +55 When 1 4 bg = 0, this is an isometry subgroup
generated by the vector field

5—4=a;, +q¢93+[aq—(S-—l)](xlc71+x232), (20)
and {£,,£,,£,} span the Killing Lie algebra (a Lie algebra of
Bianchi type V, see below) and are tangent to the slicing of
the space-time by the orbits of the isometry group. When
1 + bg+#0, correcting for the scale factor so that the gener-
ator &, of this one-parameter similarity subgroup satisfies
(6), one has instead

§4= (1+bg)3; + 4¢3,

+ [ag — (s — D] (x' 3, + x*3,)}, (21
and consequently
& = (1+bg)di=0". (22)

The Lie brackets of the right invariant basis vector fields are

G £
Ea €2 = —(1+bg) '[ag— (s—1)]I? é'z ,

[52’5‘3] = - qogl - ag'z ’

o _ B (23)
[€3:61] = aé; — q¢és
[§1,§2] =0.
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These completely determine the Lie group structure of the
simply connected group H,, once the identity of the group is
specified as the point that is the origin of coordinates. The
one-forms {0 } defined by (17) and (22) are the left-invar-
jant one-forms dual to the left-invariant basis {£, } associat-
ed with {€,}. In terms of them the metric can assume the
form (9), (10) with ¢ =4 + bx*, (Zc0yas) =€ and
8w0y4a = — O4q. Expressed in language more familiar in
general relativistic discussions, the one-forms {o” } are in-
variant under dragging along by the vector field £,, which
generates the slicing of the space-time from the initial hyper-
surface H,C H, by dragging along.

The derivation matrix (C%,) = (1 +bg)~!
X [ag — (s — 1) 11? is invariant under the matrix automor-
phism group of the Lie algebra &, of H,. For all values of &
except A = — 1, which corresponds to the special Bianchi
type I1I, one has

h3nht={y,0°=Bdx’|(y,) = (0,0,B), BER}  (24)

since @*® = &> =dx>. Here y,C°,, is identically zero for
these one-forms, which are therefore also bi-invariant as
one-forms on H,.

The transformation inverse to (11) with b, replaced by
¥, leads to another exact bi-invariant one-form on H,:

B*=5*+B5=d(A+Bx*)=di,

- (25)
A=A+ Bx*.

Expressing the metric in terms of A leads toa form adapted
to the action of the new homothetic subgroup H, of H,:

Q= A+ (dl — Bdx®),
Q%) = X+ FNM+ o (exp{[ (s — 1)A — ax>]1®
dx!
+ (G — K} + Me*, + Ne®)) | dx* |,
dx?
(26)
=b—B, a=a—-B(s—1),
o= (1+¢B)g, G=¢(1+¢B)",
F= -3,

ST~ ]

By choosing b =0, one obtains the slicing by the isometry
subgroup, which may be a group of Bianchi type VI;
(h #0, — ©), VI, (§,#0, a=0), V (g,=0,a#0), or I
(Go=0=a).

For Bianchi type VI_, = III, setting a = 1 = g,, one
has instead '

htnht ={y,0°|(y,) = (#,9.B)eR%} (27)

and the automorphism group may be used to reduce (7, ) to
the form (1,1,0). In this case a second linearly independent
eigenvector of (C°,, ) exists, namely (1,1,0) with eigenval-
ue 8 = (1 4 bg) ~'(g —s + 1), corresponding to the one-
formo! + 0° = e~ 95+ D2 d(x! + x?), which is bi-invar-
iant when restricted to the subgroup H,, where A = 0. One
therefore has the option of considering the transformation
inverse to (11) with b, replaced by (% ,#,0), leading to an
example in which @* is not bi-invariant when 8 #0.
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The most degenerate representation matrix elements of finite rotations of
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Using a technique of Strom and Boyer [S. Strom, Ark. Fys. 33, 465 (1966) and C. P. Boyer, J.
Math. Phys. 12, 1599 (1971) ], the matrix elements of finite rotations of the group SO(n — 2, 2)
have been computed in the most degenerate principal series of continuous representations.

1. INTRODUCTION

The problem of calculating unitary irreducible repre-
sentation (UIR) matrix elements of finite rotations of com-
pact and noncompact rotation groups has attracted consid-
erable attention during the past several years, and a number
of papers'~'® have already appeared on the subject. How-
ever, most of these papers concern either the compact groups
SO(n) or the noncompact groups of the Lorentz type
SO(n — 1, 1) only; the more general cases SO(p, ¢), p, ¢>2,
usually have not been considered in this context. In a pre-
vious paper,'® the author therefore focused his attention on
the simplest of these groups, viz. SO(2, 2), and obtained the
matrix elements of its finite rotations in a general UIR. It
was possible to do this in a relatively simple manner by using
its  isomorphism  with  the  direct product
SO(2, 1) ®S0(2, 1), and a trick of Friedman and Wang.®
As no such isomorphism obviously exists for the higher
groups SO(n — 2, 2), n>5, other means have to be em-
ployed for them. Although the general case of an arbitrary
UIR of SO(n — 2, 2) appears somewhat intractable at the
moment, a technique of Strom?° and Boyer?' for the special
class of “most degenerate” representations [which they use
for SO(3, 1) and SO(n, 1), respectively] is found to be ap-
plicable in the case of these groups also. We prove this in the
present paper by explicitly calculating, by this method, the
matrix elements of finite rotations of SO(n — 2, 2) in the
most degenerate principal series of continuous representa-
tions. Let us recall here that by a “most degenerate” repre-
sentation, we mean one that is labeled by just one index, i.e.,
all the Casimir operators of the group vanish in such a repre-
sentation except one that is just the Laplace—Beltrami opera-
tor.22 We start by obtaining a particular realization of a set of
representations of SO(n — 2, 2), which we identify with the
most degenerate principal series of continuous representa-
tions as described by Limic, Niederle, and Raczka.”® The
action of operators of these representations on the general
element of the function space (on which these operators
operate) is then explicitly obtained. It is only then that the
actual calculation of the required matrix element is carried

out.
il. THE REPRESENTATIONS 7° OF SO(n — 2, 2)

Consider the Minkowski space M,, _ ,, spanned by the
points

X= (X}, X5 ...,X,) = (x;)
(Latin indices , J, k, etc. take on the values from 1 to n) and
having metric
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2 24v1/2
r=(6x)"?= (2 +x3 +---+x2_, —x2_; —x2)V%

Let B° be the space of functions f(x) given on the cone
C,_5,: r=0,
in M, _,,, and such that (i) f(x) is infinitely differentiable
at every point of the cone; (ii) f(x) is homogeneous in x, of
degree o, i.e.,
Sflax) = a°f(x),
and (iii) f(x) isevenin x, i.e.,
J(—x) =f(x).

Now, if fis an element of B’ and geSO(n — 2,2), i.e., g is
an orthogonal transformation in M, _,,, with detg=1,
then it is immediate that f, also belongs to B, where

fora>0;

£ (x) =flg~'x). (1)
Hence
S@)f=1 (2)

defines a (linear) operator
S°(g): B°—>B°

on B?. It is easily verified that the set
{S°(g), g€SO(n —2,2)}

forms a representation of SO(n — 2, 2) in the space B°.

Consider now the (n — 2)-dimensional hyperboloid
S,_ 31 (of one sheet) spanned by the (n — 1)-tuples of real
numbers

(€182 - - sbn1) = (&)
(Greek indices a, B, 7, etc. take on the values from 1 to
n — 1), satisfying

EY+E3 4+ 48,60 =1 (3)
For the sake of convenience, we shall denote the points of
S, _ 3, by primed Greek letters such as £, 7', §’, etc.; thus

E'=0¢)=0Enén -6 1)

where the £, satisfy (3). Let. D> (S, _3 ) be the set of infi-
nitely differentiable functionson S, _,,.
We now associate with each function fof B, a function

F=Qf of D*(S,_5,;) by the rule [note that

(£2)€S,_31=(£,, 1NeC, _,,]

F(é")EF(§1,§2,---,§,._1)=f(§1,§z,---»§.._1»1)-
(4)

In other words, Q is a mapping
Q:B°—>D>(S,_3,)
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defined by (4) with F=Q f.
Now homogeneity of fe€ B° implies that, for x,, >0,

S(x, %5 . .

xl xz n—1
Y T
Xy Xn Xn

%)

=x:F(—’-‘-‘—,i,...,x"“), (5a)
xn xn xn
where F= Q/f, as
(xl: x2’ LA ,X,, )ecn—zz
X
;»(i,.&,..., )eS
x'l x’l xn
Similarly, for x, <O,
Sy Xg, . %)
=(—x,,)"f(—i,—ﬁ,...,——x"_l ,_1)
x'l xn x'l
‘_—(_x )a.f(i’ﬁ’“-,x"_l ;1)
" xﬂ xn x'l
X
=(_xn)ap(ﬂ,f2_,,“,Ll.), (5b)
x’l x’l x’l

where we again have F = Q f; and evenness of the function
Jf(x) has been used.

Thus each Fe D* (S,_;,) uniquely determines, ac-
cording to the rules (5a) and (5b), the feB“ such that
F = Q f: we express this by saying that f = Q ! F. Note that
we encounter some difficulty in the rules (5a) and (5b)
when x, = 0; however, this can be overcome, as shown by
Bander and Iztykson?* and mentioned by Boyer and Arda-
lan,?® by adding to S, _;, extra points at infinity, i.e., by
compactifying S, _ ;; by adjunction of a surface at infinity.

We thus see that there exists a one to one correspon-
dence between B° and D* (S, _;, ), and therefore, opera-
tors of the representation S° (g) lead to operators of the rep-
resentation

T°(g) =Q(s ()" (6)
in the function space D> (S, _;,).

IIl. RELATIONSHIP OF T° TO THE REPRESENTATIONS
CA+,, OF LNR

The best way to find the values of o for which the repre-
sentations 7" are unitary and irreducible is by relating them
to the representations C2*,, of Limic, Niederle, and
Raczka?® (we denote them by LNR ), which we now do. Let
[ be the Laplace operator

2 a 2 a 2 a 2 2
=az+ rERL - e _32
Ox; Ix; ox:_, 9x,_, Ox
in the space M, _,,. If we consider O inside the cone
C,_,,,ie,for

r= (xx)"?>0,
and introduce some polar coordinates
(r,0,,6,...,6,_,)
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in M, _,, such that
x;=r0,06,6,...

then [J can be written as

-1 9 19_) 1
. r"“c?r(’ﬁ ar) T

where O, the Laplace operator over the hyperboloid r = 1,
is a differential operator in the angular variables {6, }. (This
can be easily seen by writing 0 = div grad and then using for
divergence and gradient, the expressions in orthogonal cur-
vilinear coordinates in M,, _ , , , which are immediate gener-
alizations of the corresponding expressions in R>.) Suppose
now that f(x) is an even homogeneous function of
xe M, _,,, of degree o, and satisfies (f = 0. Then, by ho-
mogeneity,

f(x) = flr-(x/n)) = rfix/r) = F{(6,)
for some function £ of the angular variables {6, }. Hence

0=Df=}"-—1—i(/'-‘% )+§Do}”

r=ldr
=fo(n+o—2)F 24 0,f=0.
= Oof= —a(n+0—2)f

This proves the following statement.

Statement (A): If f(x) is an even homogeneous function
of degree o and satisfies O f= 0, then f(x/r) is an even ei-
genfunction of [, corresponding to the eigenvalue

—o(n+o-2).

Next, it can be checked that O, commutes with the ele-
ments of SO(n — 2, 2), i.e., if £ belongs to the hyperboloid
r=1and

L(g)F(£) = F(g'6),
then

OoL(8) = L(g)D,.

As L(g) obviously transforms even functions into even func-
tions, we get the following statement.

Statement (B): An even eigenfunction of O, correspond-
ing to a given eigenvalue is transformed by L (g) into an even
eigenfunction corresponding to the same eigenvalue.

Now, just as in the case of SO(n) (see Ref. 26) and
SO(n —1,1) (see Ref. 27), the representations 7 of
SO(n — 2, 2) are equivalent to the representations Q° ob-
tained as follows: First, let 7 be the set of even homogen-
eous functions f{x) of degree o such that O f= 0. Next, we
introduce a bit of notation: we use unprimed Greek letters £,
1, &, etc. to denote points of M,, _, , that lie on the hyperbo-
loid r = 1; thus

E=(£1, 85 -,§n)
means that

i+ ++E -6l —6a=1
And now, we suppose that 7 is the set of even functions
S(&) on this hyperboloid such that

rf(x/r)e Z°.

Then, by the statement (A) above, #° is simply the set of
even eigenfunctions of [J, corresponding to the eigenvalue

0._1) i=1,2,....n,
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—o{(n+o—2), and by (B) above, it is invariant under
SO(n — 2, 2). The representations Q° are then just the re-
striction of L(g) to #°.

If we now look at the paper®® of LNR, we see that the
definition of our #°° makes it identical with their space

H#+,, of the representations C 2 *, ,. Hence our represen-

tations Q7 are the same as their representations C 2+, ,. The
permissible set of values of o is therefore obtained by ex-
pressing it in terms of A (whose range is given in Ref. 23);
this is best done by equating the expressions for the eigenval-
ues of {J, in terms of o and A, which gives

—on+o0-—-2)
=A*+((n—2)/2)
=((n—2)/2+iA)(n—2)/2 —iA)
=(A—(n—2)2iA—(n—2)/2+n—-2)
=0 =iA— (n—2)/2.

As A ranges®® between 0 and o, we see that the representa-
tions T “ are unitary and irreducible for

o=ip— (n—2)/2, p>0. N

IV. EXPLICIT FORM OF THE OPERATORS 7“
Let us now find the effect of the operator T 7 on F, i.e., if
(T°()F =Fy,

we wish to find out F, (§’) in terms of F(£') [recall that
§'=(Epés. - sbn1)

is a general point of S, _;; ]. We have
F,=(T°(@)F=0S°(g)Q " 'F
=Q(5°@)f (=Q7'F
=0,
= F, (&) = (Qh)(€) =L (6as )
=flg" " (& D)
=f(€ Vapls + €8 Nan> @ Nusbs
+ €@ D)
=8 Vubs + (8 Nunl”
(€ Vapls + @ Vean
Xf( @ Vupls + €@ Do 1)
=T (@)F) (§.)
=F,(£)
=€ Vugbs + (€ D’
><1,,((15"‘).,‘,35,3 + (g")a.,).
(8 Dusbs + (8 n

If g=h, an element of the subgroup SO(n —2,1) of
SO(n — 2, 2), which keeps x,, invariant, then

UT MNP E)=UT (M) (E")
=F((h _l)apgp) =F(h _15'),

i.e,, T7(h) becomes the quasiregular representation of
SO(n — 2, 1). Asits decomposition into irreducible compo-

(8)
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nents is known?® and the matrix elements of 4 in these com-
ponents have already been calculated,?! it is sufficient to con-
sider only those g€ SO(n — 2,2) that do not keep x,
invariant. Now it is known?® that every such element has one

of the following two representations: (i) if g,, <1 then

hy, h,eS0(n -2, 1),

where 7,_,,(a) is the rotation by an angle a in the

((n — 1), n) plane of M,, _,,; and (ii) if g,, > 1 then
g=hl In_zn(a)hz, hl’ hZESO(Il—2, l),

where /,_,, () is the usual Lorentz transformation by a

(hyperbolic) angle « in the ((n — 2), n) plane of M,, _,,.

However, it is easy to verify by the direct multiplication of
matrices, that

In—2,n(a) = n—ln( _17/2)1»—2}!—1 (a)rn—ln(ﬂ-/z)’
so that in the case (ii), g is expressible in the form
g=h’ rn—ln( _ﬂ/z)horn—ln(ﬂ-/z)hm
ho, hy, h€SO(n — 2, 1).

It therefore follows that we need only to find the effect of
T°(T,_, .(a))on functions F in order to be able to obtain
the effect of T (g) on them for arbitrary geSO(n — 2, 2)
and hence also the matrix elements of 77 (g) between var-

ious basis elements of D= (S, _;).
NOWWlthg= n—ln(a)y (8) giVCS

T, _ 1w (@)WF(€1s 620 - - - 1)

=|4 |"F(5A;,%,...,§";

g=hl’n—|n(a)h2’

sina—¢§,_, cosa)
b

A
€2
where
A=cosa—§£,_, sina.

Next, we transform, with LNR,° to the “biharmonic”
coordinates

(¢l’ ¢2"‘92’ ML ¢r) 0,, 19f+ 19 0))

noddand =2r+ 3,
on the hyperboloid §, _ 5 ; , defined by

£ =cosg,sind,.--sind, , coshf,
&, =sing,;sind,---sind, | cosh§,
&3 =cos @, cos #,8in ;- - -sin?, | cosh 6,
£, =sin@,cos?,sind;..-sindd,, , cosh b,

(10a)
§Z(r—t)—| =cos@,_, 00819,_, Silli?,._,+|
-++sind, ., cosh 6,
§2(r—t) =sin¢,_, 0081?,_, sin 4, —t41
---sind,, | cosh 6,
§2r—1 =cos¢r COSi?, Sin'?r-lr-l COShg’
&>, =sing, cos ¢, sin¥, _ ; cosh §,
§2r+l =°°St97+1 OOSha’
£2,42 =sinh 6,
with
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@€l0,27), j=12,...,r
3,€[0,7/2], j=2,3,...,n,

19,_“6[0, 7],
fe( — o, »),
i.e., by

sinh 6 =£,, _ ,,
coshf=(E2+£3+---+£3,, )3
§2r+l

cos?,, , = ,
AT S R N e
2 2 R 2 y1/2
sind, | = (fl+§2+ +er) 1/2°
Ei+&2+-+E8%41)
2 2 y1/2
00819,= 2(§2r2—l+§2r) - 1/2’
(§l+§2+"'+§2r)
ing o GiHEi 8L )"
T+
(10b)
COS!? _ (gg(r—t)—l +§§(r—t) )1/2
r—t =

EX4E3+-+E3,_ 7

sin & = (§%+§§+”'+§§(r—1)_2)1/2

T E A E 4+ E O

(E34+ €D

cos ¥, = ,
T HEI A ED
(§2 +§2)1/2
sin J, = 2 ; * 241/2
Ei+é3+---+£€3)
sing, = §y
Ty +EH”
=12...,r
cos @, = §3_1 ’
Ty +EP?
Then if
(¢l’ P2y - - Prs 02» '939 v »'?r+ 1 9)
are the biharmonic coordinates of
(;1: §2’ . "gn— 1 )’
those of
(ﬁl & &,_, sina+§&,_, cosa)
4’4’7 a4’ A
will be
(¢1’ P2 oo s Prs 19'29 03’ s ’19r+1y 0,),
where
sinh 8’ = §,,_,co§a+sina ’
—&,_,;sina+cosa
ie.,
sinh @' = s1@0co§a+s1na . (11
— sinh @ sin a + cos a
Thus we finally get
1198 J. Math. Phys., Vol. 27, No. 5, May 1986

Ta(rn—ln (a))'F(¢l9 ¢21 L ’¢r! 021 03) oo ’0r+l’ 0)
(12)
= | — sinh @ sin a + cos a|”
XF(¢1’ P2s - o« s Pps 021 193: vo ’0r+ 19 0’)

where 8 is given by (11).

V. MATRIX ELEMENTS OF FINITE ROTATIONS

We now come to the calculation of the matrix elements
of finite rotations of SO(n — 2, 2) in the representation 77
As seen earlier, we need to carry it out only for those of the
rotation r, _ , , (a). For this purpose, we need, of course, a
set of basis vectors (functions) spanning the space
D~=(S,_;,); we take this as the following one given by
LNRZ%:

|Ly+ oy by ooy myymy, oo m,),

with
L= —r+1,—-r+2,..., (13a)
L, =L+2,L+4,. ..;

L, —, by byl yumyymy, o m,),

with
L=—r+1,—-r+2,..., (13b)
Loy=L+1,L+3,...;

A+, 0, Ly oy mymy, o m, ),

with
0<A < 0, (13¢c)
L,,=012...;

A, =, byl ymyymy, o m),

with
0<A < oo, (13d)
L.,=012...;

where

L, +, 0, by s mymy, .. m,)

=VEHOY 50 (@),
with
V',++L. (6) = — (2/y/N;)tanh @ cosh ~L+27¢
XFWL+L, +2r+ D), 0L =1, +2);
% tanh’ ), (142)
Vz,—fl (8) = (1/YN;)cosh— L +219

X FGL AL, +20, L= +1);

}; tanh? 9), (14b)
and
A, ol byl myymy, .m,)
=VENOY 2 0 (),
with
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VA (6) = — ——tanh B cosh~ "+
1

X P BGA+ 1 +r+1),8GA —1,

—r+2);} tanh?9), (14¢c)
V,;A‘(G) = cosh—+M) g
K,
X F(BGA+ 1), 3(GA =1,y —r+1);
1; tanh? 6). (14d)
Here o stands for the set of angles
{on 02 P By sy - . ,19,+1},
while
Yol (@)

are the harmonic functions on the sphere S, _ ; given in Ref.
30, where the ranges of values of I, /s, . . ., L,,my, m,, . . .,
m, are also given.

Let us now calculate the matrix elements of 7, _ , , (@)
between two basis vectors of the type (12a). We have

M=<L,+,l2,13,...
XTo(rn—ln(a))
XL +,15,15%, ..

dep1ymymy, ..o m,|

i smi,my, ... ml)
- f du(@, OV FE O Y E @) Ty (@)

x{V 2 @Y @),
where du(w, 8) is the invariant measure on S, _;; and is
therefore given by>°

du(w, 8) = du(w)cosh® 6 do

with du (@) being the invariant measure on S, _; (see Ref.
30). Now using the formula (12) and the orthonormality of
Y’ (see Ref. 28), we get

M= fdp(w)Y’,:‘;:fr;;(w)Y’,j;'f;t'(w>
x J cosh 9B ¥ ;"L (B)V 1 -'(8")

X | — sinh @ sin a + cos a|”

r+1 r

= al;lz 8.1, bl;ll 8 s
XJ d6 cosh? @ | — sinh @ sin a + cos a|”

X szf, 6 V,Tfl'(e 0.
Denoting the product of Kronecker deltas by 8, we write this
as

—J

M=6f df cosh? 6 | — sinh 8 sin a + cos a|”

XV L@V E (@), (15)

Ir+l

Remembering that
0<a<r = sina>0,
we note that

—sinh @sina + cos a
is a monotonically decreasing function of 6, starting from
+ o at § = — o, going to the value 0 at

6 = 6, = sinh~'(cot ),
and then decreasing to — « at 8 = «. Hence
( — sinh @sin a + cos a)

_ { — (—sinh @sina +cosa), 6>06,,

—sinh @sina + cosa, 6<6,.
It follows that
M = Ml + Mz,
where

b
M = SI d0 cosh? ( — sinh @ sin a + cos a)°
XV,:’“I(G)V,T:‘]'(@'), (16a)

M2=6f d6f cosh? 8( — 1)°( — sinh @sin a + cos a)”
8

X V,:’;(Q)V,TL"(G’). (16b)
It will be shown in th’e+Appendix that
M,=(-1)*'M, 17
so that
M={1-(-1"M,, (18)

i.e, it is sufficient to calculate the integral M,. In order to
carry out this rather complicated integration, we proceed as
follows.

We put

L-1I,,=—-(2k+2),
L1, =~ (2k"+2),
so that k, k' take on the values
0,12....
Then
L+l +2r+1=L+L+2k+2+2r+1
=2L+k+r+),
L—-1Il  +2=L—-L—-2k—-2+4+2= —2k.
Hence, remembering that
F(a, b;c;z) =F(b,a;c;2),
we get from (14a),

V. 5(6) = — (2/YN,)tanh @ sech™+2 OF( — k, L + k + r + }; §; tanh? 6)
= — (2/YN,)tanh 0 sech” +* OF( —k, — L — r — k; }; — sinh? 9),

r+1

using Eq. (22), p. 64 of Ref. 31;
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(_l)kk! 1 —2k—L-—r—1g2::
(C2k—L—r— Dy, 2isimhg C**' (isinh ),

using Eq. (22), p. 176 of Ref. 32, C % (x) being the Gegenbauer polynomial;

= (2/m)tanh0800hl'+2'+2k0

= i (_l)kk! sechL+2r+2k+lec—zk—L—r—l(isinho)
N, (=2k—L—r—1),,, el

= i (—‘l)kk! mhL+2r+2k+ler(—2k—L—r—i)r(—2k—'2L—2r—l)
VN, (=2k—L—r—1),,, T(—4k—2L—2r—2)T(—L—r+})

—2k—~L—r—3/2,—2k—L—r—3/2)¢: 3
xP£k+2’I‘ L—r—3 2 L—r-3/ ’(zsmh0),

using the expression for Gegenbauer polynomials in terms of Jacobi polynomials given in Ref. 21;

= i ("‘l)kk! sechL+2,+2k+|9F(-2k—L—r—i)F(—2k—-2.L—2r—l)
N, (=2%k—L—r—1),,, T(—4k—2L—2r—2)[(—L—r+14)
X2_2k_12k+1 N(—L—r+{)(—L—-r+1})

meo T(m+ NI'Qk+2—-—m)I(—L—r—m—-NI(—L—-r—-2k+m—3)
X (isinh 8 — 1)**1-™(isinh § + 1)™,
using this time the standard expansion of Jacobi polynomials.>? Thus

(19)

V+L(9) = i (= Dk —2-1 I'(—2k—L—-r—})
ot VN, (=2k—L—r—1),,, T(—4k—2L—2r-2)
XT(—=2k—2L—2r—1)I'(—L —r+})sech*+¥+2+1¢g
xS (i sinh  + 1)™(isinh § — 1) +!-m
S T(m+1)FQRk+2—-mI(—L—r—m—-})I'(—=L—-r—2k+m~—3})
=iV, sechl.+2r+2k+loz (isinh & + 1)"(isinh @ — 1)2+1—-m
S Tm+DIk+2—mT(—L—r—m—-)PL(—L—r—2k4+m—3)’

where

_ 1 (— 1)k -2 I'(—2k—L—r—1})
JN, (=2%k—L—r—1),,, T(—4k—2L—2r—2)
It follows that
VI-;+L1’(0') =l:/V‘; sechL'+2r+2k’+l 0:

I(—2k—2L—2r—DI(—L—r+}).

1

xzk'2+1 (isinh 8’ + 1)™ (isinh §' — 1)’ +1-m
mmo T(m' + NT(2k' +2 —m’)I'( —L’_r—m'_i)r‘( —L,_"-Zk'-{-m'_i)’

where 4" is obtained from .#", by replacing Lby L' and k by k'
Let us now put

t=}(isinh § — 1)
= —2dt=cosh0df, 1+t=4(isinhé +1).
Then it is easy to check that, withz =1 — e~ %@,

— sinh @ sin @ + cos a = (1 + zt),

isinh8' 4+ 1=2(1+4+8)/(1 4+ zt),

isinh @' —1=2e"%%/(1+zt),

secht+¥+2 9 — (1 4 isinh @) ~"—*—L/2(1 — jsinh @) ~"—*—L/2
=2—L—2’—2k(___1)—r—k—L/2t—r—k—L/2(l+t)—r—k—L/2’

sechL +¥+2K'+1gr _ g —L'=2r—2k'—1( _ ) —r—k'= (L' + D22+ k' + (L' + 1)/2)a

Xl —r—k'—-(L'+l)/2(1 + t) —r——-k'—(L'+l)/2(1 +Zt)L,+2’+2k'+l.
Using Egs. (19)-(26), (14a) gives (¢, = sinh 8,)
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- 1/2 +it,
M1=6f —2idtelay(1+Zt)al:/V1i./V'{2_L_2r_2k(—1)_’_k_L/2t—'_k—L/2(l+t)—'_k_L/2
—1/2 — {oo
Xz——L'—Zr—Zk'—lell(r+k'+(L'+l)/2)a(_1)—r—k'—(l_'+l)/2t—r—k'—(L'+l)/2(l+t)—r—k'—(L'+l)/2
2m(l+t)m'22—k—mt2k+l_m
C(m+ DLk +2—m)T(—L—r—m—PT(—L—r—2k+m—3)
2m’(l+t)m’(l+zt)—m’22k’+l—m’e—21(2k'+l—m’)at2k'+l—m’(l+zt)—2k’—l+m'
Fm+1DIFQk'+2—m)I(-L'—r—m' - HI(—L' —r—2k"+m' —3)

=i6-/V‘l./V‘12—L_L —4r+2( _ 1)——k—k —2r—(L+L +1)/2eia(a+2r—2k +L'—1)

X;;eﬁmull‘(m+l)l"(2k+2—m)F(—L—r—m—%)l"(—L—r—2k+m-—%)

X(l +zt)L’+2r+2k‘+lzz

-1
XF(m'+l)l"(2k'+2—m')F(—L'—r—m'——;—)I‘(—L’—r——Zk’+m'—%)] X1, (27)
where [ is the integral
I___f_l/2+i‘0dtt—(L+L’—3)/2—2r—m—m’+k+k’(l+t)—(L+L’+l)/2—2r—k——k’+m+m'(1+zt)L’+a+2r. (28)
- 1/2 —iw

It is calculated in the Appendix for the general exponents , 8, . As here,
a=—(L+4+L'-3)2—2r—-m—m'+k+k',
B=—L+L'+1)2-2r—k—k’'+m+m,
y=L'4+a+2r=L"+ip—(n—1)/242r,

and the definition of k, k' [given after Eq. (18)] implies that
L + L'isan even integer = (L + L ')/2 is an integer,

we shall have
exp(2mia) = exp(im) = — 1,
exp(2miB) = exp(im) = — 1,
exp(27iy) = exp(inm)exp( — 2mp) = ( — 1)"exp( — 27p).

Hence Eq. (A6) gives

I= 1 [2 T(—(L+L"=52-2r—m—-—m'+k+k’) M—ot+L+2r—1)
—14(=D%e 2| T(—0o—(L'—=L-1)24+2r+k+k'—m—m')
sz,(—a—L'—Zr,—L—+-I—'—_§-—2r—m—m’+k+k’;—a—é—-_—itl+k+k'-—m—m';e‘2‘“)

2
M@ L D22 —k—k'+mtm)

—0+L+2r—1)edali+o+2n
F—O'—(L_L'+3)/2+m+m,_k_k,)

LAl =1 o kb +mam;—o L =L+3

5 > —m—m'+k+k’;e2"")].

(29)

We thus see that I depends only on (m + m') and not on m or m’ individually. If we therefore change the (m, m’) double
summation in (27) to the (&, m') summation, where 4 = m + m’, I will come out of the m’ summation. Using

X2Fl(_a_L,—2r,'—

T'(2)T'(1 —z) = csc 7z,
this summation will become

e2ime N(—p+m )T L+r+2k—p+m +3HT(—2k"+m' —1)
; m! I'2k+2+m —p)I(—L—r—p+m —PI(—L' ' —r—-2k'+m' —3)

XI‘(L'+r+m’+§);r!;sinar(l+p—m')sin1r(—L—r—2k+,u—m’—§)

Xsinm(—L'—r—m' —Dsin7(2k’' +2 —m’)
e (=) L+ r+ 2k —p+ D ( =2k = 1) (L' +7+]) "
- ; 2k +2—p)(—L—r—p—4), (=L —r—2k"'+3),,m"
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L(—pw)TL+r+2k—p+HT(=2k'—1HIOL ' +r+3)
Frk+2—-p)N(—L—r—p—}Pr(—-L' —r—2k'—3)

x—lzsinﬁ(l+,u)sin1r(—L—r—-2k+,u—§)sin1r(—L’—r—-i)sinﬂ'(2k'+2)
7

—u,L+r+2k—p+3—-2k—1,L" +r+3 vt
4F3(2k+2—,u,—L—r—/,t—g,—L’—-r—2k—-§; ¢ )
x{rA+m)T(—L—r—2k+p—PT(—L' ~r—HPT 2k’ +2)
XPQRk+2—p)T(—L—r—p—PL(—L'—r—2k'—}-".
Using this and (29), (27) becomes
BN N
T o4 (—De
I'(—c+L+2r—1)e" 3 +ba
T(—L' —r—Prk'+2)I(—L' —r—2k'—3)

—L—~L'—4r-13 l)—k—k'-—Zr—(L-{-L'%—l)/Z
1 (—

X

X3 [{r(l +wT(—L—r—2p+p—PTQk+2—p)T(—L—r—p— P}~
N

—,U,L+r+2k“‘,u+§»—2k—I,L'+'+§,
x4F , e2la)
%k +2—p,~L—r—p—4—L' —r—2k—3

X[ r(— (L+L,_5)/2—2r—.u’+k+k,) i(c+2r+L")a
N—o— (L' —L-D2+2r+k+k' —p)
xfl(—a—L'—2r—L—+£';5—2r—,u+k+k’;—a—£——2L_—l+k+k’—,u;e’“")
-+ L )22 —k—k'+p) ior2r+Lia

N—o—(L—L'+3)2+u—k—k)
szl<—a—L'—2r,—Ei—‘—l—zr—k-k'w;—a—f—“zl‘—+3—y+k+k';e2'“)”. (30)

This value of M, gives the required matrix element M
through (18).

The above computation has been carried out only for the
matrix elements between two states (basis functions) of the
type (13a); for completeness’ sake, we should really carry
them out for all possible pair of states (13a)—(13d). In addi-
tion, the same thing should be repeated for even n. However,
as these large number of lengthy calculations (leading to
equally lengthy results) are not going to give us any addi-
tional insight, we content ourselves with just one illustrative
calculation and the remark that others can be carried out in
exactly the same way.
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APPENDIX: EVALUATION OF AN IMPORTANT
INTEGRAL

In this appendix, we prove Eq. (17) of the text and
evaluate the integral
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- 1/2 4+ it

J=f (1 + 071 + z)" dt,
—1/2—iw

z=1—e"%, t,=}cota,

which appears in Eq. (28). Note first of all that

1 . 1 1. 1 e“’+e“")
———ity= —— 4 —icota= —— (1 +T° _
2 2 2 2( ee—e =
-1 2 0t 1

2 g2l ] —e 2= z’

so that the point A: — } + it, is the only zero of (1 + z¢) in

the complex ¢ plane. We denote the other two zeros t = O and

t = — 1 of the integrand by 0 and B, respectively.
Consider now the integral

.7=f to(1 4+ 021 +zt)7 dt,
D

where D is the contour shown in Fig. 1. As the integrand has
no singularity within D, J = 0. Also, for

Re(a+B8 +7)< —1, (A1)

contributions to J from portions of D consisting of the infi-
nite circle |#| = R — o0, vanish so that we get
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FIG. 1. The contour D in the complex ¢ plane.

—It“(1+t)ﬁ(1+zt)7dt
1

=Jt“(1+t)ﬂ(1+2t)ydt

1

+Jt"(l + 081 +z)7dt. (A2)
1
Suppose now that

Rea> —1, Ref>—1, Rey> — 1 (A3)

Then the portions /, 1, and I of D can be taken as in Fig. 2.
Now

ta| _, —_ tall'e2m’a’

(1+ 0P +20)7|_, = (1 +0P(1+2)7|,,

:»ft“(l + )81 +zt)7dt
1

=U _J ){t“(l +6)P(1 + zt)"}dt
4 - b

== t*(1 +0)P(1 +2zt)"dt

h

= (1 — &™) J‘ao t*(1+ )P +zt)? dt,
0

/.

FIG. 2. Possible form of the contour D.

1203 J. Math. Phys., Vol. 27, No. 5, May 1986

where arg ¢ = 0 in the integrand. Similarly

—-Lt"(l+t)ﬁ(l+zt)”dt

=—(=e" | t°(0+ P +zt)"dr

1,
— 172+t

=(1—e2"’Yf t(1 + 2 +zt)7 ds,
—1/2—iw

with arg (1 + zt) = — /2 in the integrand, and

J;t"(1+t)ﬁ(1+zt)”dt

(1 + 02 +2z0)7 ds,

—1
with arg (1 + ¢) = — 7 in the integrand,
— (1 _e2m'ﬁ)( _ 1)a+ﬂ+7’+lz7'

= (1 — &™)

xj te(t— DBt —z"YHrdr.
1
Thus we get

— 172+ i1,
f (1 4+ )21 +zt)"dt

—1/2 e
=(1—321ﬂ7)—1[(1—82ﬂa)f ta(1+t)ﬂ
0
X (1+2zt)7dt + (1 —™P)(— 1) +h+r+1gr

Xf t(t— 1Pt —z"YHYrdr. (A4)
1

.7’=th“(1 + 0P(1 +zt)7 dt,
where D' is the contour shown in Fig. 3, we can show that
J-“V“iw t°(1+0)P(1 +21) dt
— 172+ i
= —(l——e"‘")“[(l—e’""")
XJ:O t (14 0P(1 + zt)7 dt

/

»

Ny

FIG. 3. The contour D' in the complex ¢ plane.
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+ (1 _eZTrlﬂ)( _ 1)a+ﬁ+y+lzy
xj t“(t—l)ﬂ(t—z_‘)"dt],
1
which proves that

— 12+t
J t(1 + )P +zt) dt

—1/2—iw

—1/24 1
= —J t2(1 + 0?1 4 z)7 dt. (AS)

— 1/2 4 ity

If we now compare the definitions (16a) and (16b) (of the
text) of M, and M,, we see that M,/( — 1)° will be given by
the expression (27) for M, except for the fact that the range
of integration for 7 in (28) will be changed to

—4+ity to —1+4ioo.
Hence (A5) implies that
My/(-1)'=-M,
which proves (17).

To evaluate the right-hand side of (A4), we proceed as
follows: Using Eq. (5), p. 115 of Ref. 31, with

a=b-1, B=a—c¢, y= —a,

we have
f t*(1 + 21 +z8)" dt
(]

_Td+al(—a-B-y—-1)

r(-8-v
XF(=plt+a,—B—y1—-2),
|arg z| <,

for
Re(—B—y)>Re(a+1)>0,
i.e., for
Rea> —1, Re(@a+B8+7v)<—1,

which is certainly satisfied if (A1) and (A3) are satisfied.
Next, using Eq. (6), p. 115 of Ref. 31, with

a=a—-c¢, B=c—b—-1, y= —a,

we have
f t(t— Pt —z" Y)Y dt
1

_Ta+Ar(—a—-B—-y—-1)

N-—y—a
XF(—y,—a—B—y—L;—y—a;z7"),
larg(z — 1)| <,

for
1+Re(—p)>Re(—y—a)>Re(—a—-B—y—1),
i.e., for

Rea> —1, ReB> —1,

which is again certainly satisfied if (A1) and (A3) are satis-
fied.
Hence if (A1) and (A3) are satisfied, we will have
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—1/2 + ity
f t*(1 + )81 +zt)" dt

—1/2-iw
— (1 _ e2m‘y)—l[(1 _eZm'a)

F(l+a)l(—a—f—y—1)
F(-B-v
XF(—-r14+a;,—F—v;1-2)

+ (1 _eZm'B)( _1)a+ﬁ+7+1
ri+p/r(—a—-pg—yr—1
I'(—a-v

X

X

Z’F(—y,—a

—B—y—li—r—a;z7YH|.
Now, from Eq. (27), p. 64 of Ref. 31, we have
Fl—-v,—a—B—y—L;—y—a;z7")
=(1—zYF(-y1+8—a—y,(1-2)7)),
so that
- 172 + ity
f t(L+ 021 +zt)" dt

—1/2—iw
= (1 __e21ri‘y)—1[(1 _eZm'a)

'l+a)I'(—a—B—y—1)
L(—-8-v)
XF(—=y14+a;—F—7;1-2)

+ (1 =™y (—1)+8+1
ra+ppr(—a—pF—y—1)
F(—a-y)

X

X

(1-2)

XF(—V,1+ﬂ;—a—7';(1—2)")]- (A6)

We have proved this relationship only when the conditions
(A1) and (A3) are satisfied. However, as both of its sides
are analytic functions of , 5, and ¥, it follows by the princi-
ple of analytic continuation that the two sides will be equal
for all those values of a, B, ¥ for which they do not have any
singularity. Thus we finally have evaluated the integral J
[Eq. (A6)] for all those values of the exponents a, 5, ¥ that
do not make it singular.
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The known properties of plasma dispersion functions (PDF’s) for waves in weakly relativistic,
magnetized, thermal plasmas are reviewed and a large number of new results are presented. The
PDF’s required for the description of waves with small wave number perpendicular to the
magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions
also arise in certain quantum electrodynamical calculations involving strongly magnetized
plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential
equations, and approximations for these functions are discussed as are their analytic properties
and connections with standard transcendental functions. In addition a more general class of
PDF’s relevant to waves of arbitrary perpendicular wave number is introduced and a range of

properties of these functions are derived.

I. INTRODUCTION

Electron cyclotron waves in magnetized plasmas have a
wide range of applications. These include electron cyclotron
resonance heating of laboratory plasmas to achieve ignition
and plasma profile control* and electron cyclotron current
drive to enable continuous operation of tokamaks.”* Elec-
tron cyclotron instabilities also have been investigated wide-
ly in recent years with applications to plasmas occurring in
tokamaks,** magnetic mirrors, planetary and stellar magne-
tospheres,5 solar flares,® and elsewhere. The general ques-
tion of dispersion of electron cyclotron waves (including
electron Bernstein waves) is also of current interest in stud-
ies of propagation, absorption, and mode conversion.®~'2

Essential to each of the above applications is a knowl-
edge of the dielectric properties of the plasma and the result-
ing dispersion of the relevant waves. Analytic treatment of
these properties leads to expressions for the dielectric tensor
in terms of relativistic plasma dispersion functions (hence-
forth, relativistic PDF’s) analogous to the well-known plas-
ma dispersion function discussed by Fried and Conte,"
which is appropriate to waves in unmagnetized thermal plas-
mas. The most important such PDF’s are those relevant to
the case of weakly relativistic, magnetized, thermal plasmas;
it is with these functions that the present paper will be con-
cerned. We note that these functions also occur in quantum
electrodynamical calculations involving strongly magne-
tized plasmas.'*"’

The theory of relativistic PDF’s presently consists large-
ly of results scattered through a wide literature relating to
the various applications mentioned above. Consequences of
this situation are as follows.

(i) Several different definitions (and many notations)
have been introduced for the relevant PDF’s, thereby mak-
ing comparison of papers by different authors difficult.

(ii) Having been obtained piecemeal by many authors,
the results do not form a coherent whole. Furthermore, they
suffer collectively from a number of omissions and short-
comings such as the lack of connection with standard tran-
scendental functions of mathematical physics and lack of a
detailed treatment of the analytic properties of the PDF’s.

(iii) The PDF’s required to treat electrostatic cyclotron
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waves such as Bernstein waves have been discussed only very
briefly and few of their properties are known.

In this paper we collect and systematize the known
properties of the PDF’s for weakly relativistic thermal plas-
mas in one reference. In addition we include a large number
of new properties of the most commonly discussed PDF’s
and a section on the hitherto inadequately treated PDF’s
appropriate to electrostatic cyclotron waves. We also take
this opportunity to harmonize the many notations found in
the literature and to clarify the relationships of various alter-
native PDF’s to the ones considered here.

In Secs. II and III we discuss the relativistic PDF’s ap-
propriate to waves with small perpendicular (to the magnet-
ic field) wave number in magnetized thermal plasmas—the
Dnestrovskii and Shkarofsky functions. Interrelations, dif-
ferential equations, analytic properties, series expansions,
asymptotic forms, approximations, relations to the standard
higher transcendental functions, and other properties are
discussed. Section IV is concerned with a class of more gen-
eral PDF’s relevant to waves of arbitrary perpendicular
wave number in weakly relativistic thermal plasmas. A num-
ber of useful integral forms are established for these func-
tions and, in Sec. V, for the functions considered in Sec. II.
Relationships between the PDF’s considered in this paper
and those introduced by other authors are discussed in Sec.
VL

Il. PDF’S FOR WAVES WITH SMALL PERPENDICULAR
WAVE NUMBER

In this section we discuss the properties of the relativis-
tic PDF’s appropriate to waves with small perpendicular
wave number in weakly relativistic, thermal, magnetized
plasmas—the Dnestrovskii and Shkarofsky functions.'®"?

A. Definitions, notations

We define the generalized Shkarofsky functions of in-
dexes ¢ and r as follows, '8 if Im(z — a) > 0:
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_ (" @ity [ _ at2] 1

F o (2,8) = IJ; dt———(l_it)qexp izt — (1)
e[
0 (1 —it)?

><exp[i(z—a)t+ 2 ,], (2)
1—it

where g is real, r is a non-negative integer, and z and a are
complex. Analytic continuation is used to extend this defini-
tion to Im(z — a) <0. (Alternatively, the definition may be
extended by deforming the contour of integration to ensure
convergence.) The corresponding generalized Dnestrovskii
Sfunctions'®'® are defined by

F,(2)=%,,(20) 3)

while the usual Shkarofsky and Dnestrovskii functions'®'’

are
F z,a)=F (z0),
F,(z) =F,,(2),

respectively. )

The functions % ¢ (2,a) defined here are identical
(apart from notation) to the functions used by Airoldi and
Orefice,'® Krivenski and Orefice,”® Wong et al., Wu et
al.;** Maroli and Petrillo,* Bornatici et al.,> Imre and
Weitzner, ' and Robinson, '%?* among others. The functions
F, (z) areidentical with the original functions introduced by
Dnestrovskii et al.'® The connection between the present
functions and those introduced by other authors is discussed
in Sec. V1.

(4a)
(4b)

B. Derivatives

Derivatives of & o » (2, @) may be obtained immediately
from (1), giving

aj+k (72 (72

W/q,r(%a)=/q+k,r+j+2k(z’a), (5
which relation has the special case

F o i) =7,z a). (6)

Derivatives of e “* F, (z) are given in (18).

C. Sums

Equation (2) implies that the generalized Shkarofsky
functions .% , , may be reexpressed in terms of the usual
Shkarofsky functions (» = 0) thus:

r

yq,r(z,a)=z (_l)j(;)t/o-q_j(zya); (7)

j=0

where the binomial expansion has been used. Similarly, if the
numerator and denominator in (1) are multiplied by
(1 — ir)*, where s is a non-negative integer, we find

s

y_q,r(zya)= 2 (_1)1( )?q.+s,r+j(zya)~ (8)

s
j=0 J

Expansion of the factors exp[az 2/(1 — it)] and exp[a/
(1 —it)]inpowersofain (1) and (2), respectively, leads to
the following relations:
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7 o a’
'/q(z,a) =j;0'JTFq+j,2j(z) 9
and"’

el J
fq(z,a)=e*“z-a—Fq+j(z—a). (10)
j=oJ!
Similar results are easily obtained for & , (z, a).
The generating function for the modified Bessel func-
tions [; (z) is

expla(u+u="] = i u’lL(2a).

=T w

If (1) is rewritten in the alternative form

(11)

F o (z,a) = —ie_z“J- dt(1 —it) 1
(1]

xexplize +a(l —it) +a/(1 —it)],
(12)

then (11) yields the identity

F.za)= 3 e LQa)F,_;(). (13)

J= —w

Results obtained later [Egs. (21)~(23)] imply that the se-
ries in (9) and (13) converge for |a| < |z|.

D. Recursion relations

The recursion relation for F, (z) can be obtained by in-
tegrating (1) by parts (with @ = 0, r = 0). This yields"®

(¢g—DF,(2) =1-2F,_,(2), (14)

for g#1." The more general recursion relation for
F 4 (2, a) may be obtained by considering the following inte-
gral:

f_z“fwd(l—it)(l—it)_“
1

Xexp[(a—z)(l —it) + a ]
1—it

q a )
X a—2z— - ’
( (1—ir) (1—ir?
for Im(a — z) > 0. This integral can be evaluated directly

and also by comparison with (12). Equating the two resuits
gives

a¥ 2 (za) =14+ (a—2)F  (z,a) —qF ,, (z,0),
(16)

which contains (14) as a special case. As usual, analytic
continuation is used to extend this relation to the entire com-
plex plane. Krivenski and Orefice®® derived (16) by less di-
rect means. [ We note in passing that the method used here
easily can be employed to generate an infinite hierarchy of
relations similar to (16).]

The following two identities are easily proved using
(14) and mathematical induction:

qu+l,m+l(Z) = - [(m+ I)Fq,m(z) +2Fq’m+1(2)],
(17

(15)

d"
dz"

[e " F,(z2)] =(—1)"e"%F,_,(2), (18)

P. A. Robinson 1207



where m is a non-negative integer. Equation (17) is a cor-
rected version of a result obtained by Imre and Weitzner.'?

E. Differential equations, relations to other functions
Equations (6) and (7) with r = 1 and ¢ = 0 imply
dF,(z)
Cdz

The following first-order linear differential equation satis-
fied by F, (z) then follows from (14) and (19):

—F,(2) —F,_,(2). (19)

drF, —
0= q(z) + (1 q9_ ])Fq (2) +—1—. (20)
dz z z
Equation (20) is easily integrated to give
Fq(z)=zq”‘ezf duu=% "
=2"1T(1 —¢q,2) @21
=F(1—-q)[z2~ ' —y*(1 —¢q,2)], (22)

where I'(1 —g¢q, z) and ¥*(1 — g, z) are the usual incom-
plete gamma functions (Ref. 25, Egs. 6.5.2 and 6.5.4). Thus
F, (2) is singular at the origin if g<1. This point is a branch
point of F,(z) (which is then multivalued) unless ¢ =0,
—1, —2,...(Ref. 26, Eq. 8.351.3). An alternative form of
(21) is

¢€E,(z), ¢>0,

(23)
fa_,(z), ¢<0,

Fq(z)=[

where E, and a _, are exponential integral functions de-

fined by

© o E, (2), ¢>0,
J duu % *=
1 a_q(Z), q<01

for Re(z) >0 with appropriate analytic continuation for
Re(z)<0.

The relation of F, (z) to the confluent hypergeometric
function is (Ref. 25, Egs. 13.6.28 and 13.1.29)

F,(2)=U(1,2—¢,2) =2"'U(q, 9, 2)
and hence (Ref. 25, Eq. 13.4.22)

F,,2)=(-DT+DHUA+r2—q+r2).
(25b)
The analytic continuation of the confluent hypergeometric
function is given by Ref. 25 (Egs. 13.1.9 and 13.1.10).
Together Egs. (10}, (23), and (24) imply the following
integral identity if Re(z — a) > O:

q

(24)

(25a)

F q(z,a) =e“2"r drt _qexp[(a——z)t+aT].
1
(26)

A similar result for Im(z — @) >0 may be obtained from

(12) by a change of variable. Equation (26) may also be

used to derive the recursion relation (16) for 7 (z, a).
Equations (6) and (7), with r = 1, 2, yield

o
g_‘_/_s_zf —F

dz 4 -
3 F o
_a?q_=./q—23‘_q_1+7,1_2, (27)

1208 J. Math. Phys., Vol. 27, No. 5, May 1986

where the arguments have been omitted. Eliminating %, _,
and.¥ , _ ) between these equations and the recursion rela-
tion (16) gives

0=1—(z+9—2)F,
—[2(a—2) —q+2]F, + (@a—2)F], (28)

where the primes denote partial differentiation with respect
to z. Other partial differential equations satisfied by
F , (2, a) may be obtained by similar means.

F. Series expansions

Series representations of F, (z) follow from (21) and
(22):

— 4= o 2T (1—¢q)

F(2)=2"1%T(l—qg) -V 22U —9) 29

q q ATG+2—9) (29)
—FleT(l—g)—e ¥ —(=2 (3

<o L(j+q-— 1)
(Ref. 25, Eq. 6.5.29). A further identity, which may be of
use in applications of these functions to the quantum electro-
dynamical calculations mentioned in the Introduction, fol-
lows if z is real and positive and lies on the principal branch
of F,(z) (Ref. 26, Eq. 8.354.5):
o I j(l - q) ( z)

Fo)=Y

31
/=0 Jj+1 G

where L {' =9 is a generalized Laguerre polynomial (Ref.
25, Eqgs. 22.5.16 and 22.5.17).

G. Asymptotic forms, continued fraction

The relations (21) and (23) between F, (z), the incom-
plete gamma function, and the exponential integral function
lead immediately to the following asymptotic forms, which
are valid for |z|» 1 provided |arg(z)| < 37/2 (Ref. 25, Eq.
6.5.32):

o0

T(@)F,)~ 3 (=127 ~T(g+)), (32)
i=0
T(Q)F,, ()~ 3 (= 1Y+ (j+1), 27~ ~T(g+)),
j=0
’ (33)
with
P 1Y 2)e( , 1,
(j+1),={§j+ YJ+2D)(+n, >
’ r=20.

A further asymptotic form is given in Eq. (49). These forms
are essential when calculating F, (z) for |z|»1 in order to
avoid subtraction errors in the relations (7) and (14).
The following continued fraction representation of
F, (z) follows immediately from Ref. 25 (Eq. 5.1.22) or Ref.
26 (Eq. 8.358):
1 ¢ 1 g+1 2 g¢g+2

F (2) = )
) z4+ 14 z+ 14 z4+ L4

(34)

provided |arg(z)| <.
Imre and Weitzner!? obtained the following asymptotic
form for ¥, (z, a):
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Fza)= - 3 —2 (35)
with

C,o=1, (36a)

C,i=0i+q—DC,;_+aC ;1. (36b)
Although not noted by these authors, (35) is valid only for
|arg(z)| < 37/2. This asymptotic form is required when the
recursion relation (16) or the sum rule (7) suffers from sub-
traction errors.

Having obtained asymptotic expansions of F, (z) and
& 4(z, a) for large |z| and |a| it remains to consider the case
of large g. Maroli and Petrillo? obtained the following ex-
pressions for ¢ >0 in terms of the usual PDF Z and its de-
rivatives'?:

VA Z(3) Z(4)

F@)= — (1]1)/2 - @) _ (”2/2

(29) 129 16g(2q)

Z(y) -
————=+0(¢7"),

1 44q(2q) 1/2 q

Z™ (n) = [d"Z/dZ"],.,, 1= (z+q)/(29)"?,

37

with

and
Z@Y)  3a+gq

(4a +29)'*  3(4a+29)°

4a +q
— _4(4a " zq)5/2 Z(4)(¢)

2
(38)

with ¥ = (z + ¢)/(4a + 2q)'/%. Equations (37) and (38)
are valid on the principal branches of F, (z) and ¥, (z, a)
respectively, if z and a are real.

F,(z,a) = — ZO(y)

H. Approximation

If z lies on the positive real axis in the principal branch of
F, (z) with ¢> 0 then Ref. 25, Eq. 5.1.52, gives

1/ q g(q —22)
F = 1
() z+g\ +(Z+q)2 (z+4q)*
g(6z° — 8gz + ¢%) )
+R(q,2)), 39
T (4, 2) (39)

with |R(g,z)|<g¢™*. A simpler, related approximation is
that used by Robinson,* which was of the form
F,(z)~(z+ ¢ —1)""'for g>1and z>0.

l. Special cases

In a number of special cases the form of F ¢ (2, @) sim-
plifies considerably.

(i) Ifa =0, (3) gives F (2, a) = F,(2).

(ii) Ifz=a = 0and ¢ > 1, then (21) yields

yq(()’o):Fq(o):(q_l)_l‘ (40)
Equation (14) then gives
Fy(z) = 1/z (41)

(iii) Ifg =14, 3, . . . and z is real, the imaginary part of
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F, (z) (on the principal branch) can be obtained from (27)
to give'’
0, 0<z,

Im[F, ()] = l —m(—2)"'¢/T(g), z<O.
Substitution of (43) into the sum (10) then implies'’
Im[F,(z,a)]

0, a<z
- { —mé " *[(a—2)/a] 9~ V"?
x1I,_,[2a"*(a —2)"*], z<a, (43)
provided z and a are real and z — a lies on the principal
branch of F,.

(iv) If z = ¢ we find that the change of variable t = 1/u
in (26) gives

(42)

1
F,(a,a) =e“’J. du u? %™
0

=e (—a)' " W(g—1,—a) (44)
=e % —a)'"M(g—1) —F_,(—a), (45)

and hence in particular,
Fipla,a) =e °(—a) V272 ef[ ( —a)'/?).

Note that ¥ ;,,(a, a) is double valued owing to there being
two possible choices for ( — a)/2

(v) If g = — r then (25b) and Eq. 13.6.24 of Ref. 25
imply

F_,,@)=(-D'T@r+1
><77.—l/2er./2z—r—I/ZK"_'_U2 (iz)’

where X, | ,,, is a modified spherical Bessel function.

(46)

lll. PDF’S OF HALF-INTEGER AND INTEGER INDEX

Those cases in which g is either a half-integer or an in-
teger are the ones of most interest in plasma physics and
quantum electrodynamics. A number of additional proper-
ties of the PDF’s F, and ¥, are known in these special
cases. In this section we present these additional properties
together with a number of simplified forms of the expres-
sions in Sec. II valid for integer and half-integer g. We also
discuss the analytic properties of F, (z) in more detail in
these special cases.

A. Half-integer ¢

Shkarofsky'’ obtained the following expression for
F, (z) for positive half-integer ¢ in terms of the PDF Z (see
Ref. 13), a number of whose properties are summarized in
the Appendix:

I'(q)F,(2)
q—3/2 R
= Y (—z¥T(@—1—j)+7'2(—z)7*?
ji=0
X [iz"2Z(iz"/?)] (47a)
q—372 )
= 2 (—2YT(@g—1—j) —m(—z) 37
j=0
X212 erfe(z11?). (47b)
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Equation (47a) determines F, (z) throughout the complex
plane and leads to the series representation'’

o

T(q)F,(z) = z (—zYT(g—1—)) —im(—z)?" ¢,

Jj=0
(48)
and to the asymptotic expression'’
L@F,()~—- Y T(@+H(—2)""17
j=0
—iom( —2z)1- ¢, (49)
with
0, |arg(z)|<m,
o=1{1, |arg(z)|=m,

2, w<|arg(z)|<2m.
The case of negative half-integer g can be treated using these
results and (14).
Analytic properties: Krivenski and Orefice?® derived the
following expressions for % |, and % 5/, in terms of Z:

Fip(z,a)= —iZ*V/(z—a)'?, (50a)
Faplz,a) = —Z~ /a'?, (50b)
with
zZ* =4[Z{a"? +i(z - a)"?}
+Z{—a'? +i(z—a)'"?}]. (51)

In practice only one root a'/? is relevant in Eqs. (50) and
(51) since the other root leads to identical expressions for
F 112(2, @) and F 5 ,,(z, a). In general, however, both roots
(z — a)"/? must be considered, implying that % g (z,a) is
double valued with a branch point at z = a [or, equivalently,
that 7, (z, @) is defined on the same two-sheeted Riemann
surface as (z — a)'/?]. Equations (16), (50), and (51) to-
gether enable the functions &, of half-integer index to be
reexpressed in terms of the PDF Z in a similar manner to
F,(z) [(47a)].
The expressions (51) and (A3) imply*®

F,(z,a)=—Ja" ' ?Z(Jza='1?), (52)

provided 1<|a|, |z|<|a|, and — 57/4 <arg(a'/?) <n/4.
The restriction on arg(a” 2y in (52) was first noted by Rob-
inson.'®

The double valuedness of F,(z) implies
F, (z*)# [Fq (z)]* in general, where the asterisk denotes
complex conjugation. However, we can write

F,(w*) = [F,(w*)]* (53)
for half-integer g. A modulus-argument diagram of Fs,(w?)
is shown in Fig. 1 for |w|<2.8, Im(w) >0 as an illustration of
the qualitative behavior of F, (z) for g =4, 3, ... [by con-
trast F, ,(z) has a singularity at the origin]. The asymptotic
behavior (32) holds in the region |arg(w)| < 37/4 while
Fy;,(w?) diverges exponentially for large |w| if 37/4
< |arg(w) | < 7. Complicated behavior persists for large val-
ues of |w| when |arg(w)|~37/4; we have not investigated
this behavior in detail. Figures illustrating other aspects of
the behavior of F, (z) and F , (2, a) have been published by
Maroli and Petrillo,?* Airoldi and Orefice,'? Krivenski and
Orefice,2° and Bornatici et al.2

1210 J. Math. Phys., Vol. 27, No. 5, May 1986

+180

90
o]
-90
0
20 -45
+180
-90
0
90
180 0
n < o Nuo 0 © o~ -
°©e%%e-"2 3§ 3 3 G

FIG. 1. Modulus-argument diagram of F; ,2(w2) for Im(w)>0 and
jw|<2.8. Contours of constant modulus and constant argument (in de-
grees) are as labeled along the real axis and the semicircular boundary, re-
spectively. The origin is denoted by a large dot. The zero of Fs,,(w?”) on the
real axis is indicated by the letter z.

Choice of branch: Any line passing through the origin in
Fig. 1 divides the w plane into two half-planes, each of whose
image under the mapping w — w’ is the entire complex
plane. Hence there is an infinite set of possible pairs of
branches for F, if g is a half-integer. The two most symmet-
ric locations for the line of separation in the w plane are along
either the real axis or the imaginary axis. These choices,
however, correspond to branch cuts along the positive real
axis and negative real axis, respectively, in the z plane (with
z =u?); they are thus inconvenient for calculational pur-
poses if F, (z) is to be investigated near the real z axis, as is
usually the case. A more convenient but less symmetric
choice moves the branch cut to the negative imaginary axis
in the z plane. This choice corresponds to the line of separa-
tion Im(w) = — Re(w) in the w plane.

B. Integer g

The functions # , (z, a), F, (z) of integer index are of
interest in studies of the dispersion of Bernstein waves,>'®
the dielectric properties of two-dimensional thermal plas-
mas,”” and quantum electrodynamics.'*'>

Explicit expressions for F, (z) for integer g are

T(9)F,(2)

-2
=(—-1)"“’[z"_1ezE1(z)—qz (—1)1‘111‘1—1'—2],
i=o

(34)
forg=1,2,...with
& (—zyY
E(z)= —y—Inz— ~ (35)
1 Jg’l Ty
where ¥y = 0.5772 . . . is Euler’s constant, and
Fa)=T(-)z"' ¥ =, (56)
j=o j!

forg=0,—1,—2,... (Ref. 25, Eq. 5.1.8).

Analytic properties: If ¢ =1, 2, ... then the Riemann
surface for F, has a countably infinite number of sheets due
to the logarithmic contribution to E,(z) in (55); a branch
point exists at the origin. The location of the principal
branch is arbitrary except that it is usually chosen to include
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those values of z satisfying arg(z) = 7 but not those satisfy-
ingarg(z) = — 7. Ifg=0,—1,—2,...then F, (z) is sin-
gle valued, as seen explicitly from (56). The symmetry prop-
erty of E, (z) (Ref. 25, Eq. 5.1.13), the explicit expression
(56), and (10) together imply
F,(z*) = [F,(2)]%
F (2%, a*) =[F (z,a)]%

for any integer gq.

(57a)
(57b)

IV. PDF'S FOR WAVES WITH ARBITRARY
PERPENDICULAR WAVE NUMBER

The dielectric tensor of a weakly relativistic thermal
plasma can be written in terms of integrals of the following
form>?® for waves with arbitrary perpendicular wave num-
ber:

\Il=—iJ dt
o

_ atz]
1—itl

"

ﬁexp[z’zt — A(l —cos at)
— 1t

(58)

with
A=A/(1—-1it), (59)
withm =0, 1,2, /=33, ..., and where 4 and a are com-

plex constants. These integrals may be reexpressed using the
identity

eAcos:9= i e—-ij&]j(A) (60)
ji= —»
to give
V= i R, m(z—aj,a,4,)), (61)
j= —»
with
R m(z,0,4,))
. (inm [ at? ] —A
= — dt ———— exp| izt — e *L(A).
J(; i P 1—it i)
(62)

We make the following definitions, which are analogous
to (3), (4a), and (4b):

Rl,m(z’lss)=9?1,m(zs 0,4,s), (63a)
‘%,(z,a,/l,s)=9?,_0(z,a,/1,s), (63b)
R,(z,A,5) =R, 4(z,4,5). (63¢c)
A. Sums, recursion relations, series
Equations (63a) and (63b) lead to
Rim(z,8,4,5) =Y (=1Y (J’.n)R,_,- (z,ad,s),  (64)
ji=o

which is analogous to (7). Analogs of (8)-(10) also are
derived easily.
The Bessel functions satisfy the identity

IS(Z) = (2/25) [I:_l (Z) _Is+](z)])

which implies the following recursion relation:

(65)
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ﬂl,m(zyayﬂ,s)
= (/1/25)[-%14,1,,”(2’01/1’5'— 1)
— R m(za A, s+ 1)]. (66)
The ascending series for I, (z) is
) 2j+s
I(z) = z __qi:__ (67)

<o T(s+j+1) '
Substitution of this series into (62) leads to the identity
o0 ,1 Y+s
R(z,a,4,5) = z (—2—)

j=0

e—i
Frarirn e E TR
(68)

which in turn implies
R(z,a,4,5) = GAY[1/T(s+ D]F 1, (za),
for |A | <1. A further series expansion is given by Eq. (71).

B. Integral representations

Use of the series (68) is cumbersome in general and may
result in subtraction errors for some combinations of param-
eters. To avoid such problems it is desirable to have available
integral representations of #,(z, a, A,s). We derive such
forms here.

The quantity e ~ *I, (A) may be replaced in (62) using

e M (A) =2Jw dx x exp[ —x*(1 —it)]
0

XJ2[(2A) %] (1 —it) (69)

fors> — 1 (Ref. 26, Eq. 6.633.2). Upon reversing the order
of the resulting integrals this gives

R(z,a,4,5)
= 2‘[ dx x exp( — x%)
0

XJIZ[(24)2x]F ,_, (z + X%, a). (70)

If the square of the Bessel function in Eq. (70) is expanded in
powers of 4 we obtain

‘%I(Z)ay/i'ys)

kad fA .
— _1 s+
j=0( )J(Z)

F'(2s+2+1)
Fs+j+ DT @2s+j+ DA
XF 14s4(za), (71)

where we have anticipated Eq. (80) in simplifying this re-
sult. Use of the result

X

e AL(A) =27r_”2j dx exp[ — x*(1 —it)]
0

XJos [(8)2x] (1 — it) 2, (72)

for s> — 1 (Ref. 26, Eq. 6.618.1) enables the following
expression to be derived:
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A(2,a,4,5) =21T_”2f dx exp( — x%)
0

XJo [(8)2x1.F 1, (2 + X%, a).
(73)

Computational advantages of (70) and (73) are (i) the fac-
tors exp( — x?) in these equations restrict the effective
ranges of integration to relatively small intervals in x pro-
vided |arg(z + x* — a)| < 37/2; (ii) if A, z, and a have small
imaginary parts (a case often considered in applications) the
integrand in (70) does not oscillate rapidly in sign and so
(70) is relatively straightforward to evaluate; and (iii) if 4 is
real, the real and imaginary parts of #, separate as integrals
of the real and imaginary parts of ¥ ,_, or & ,_,,,.
A further integral identity can be derived if the follow-

ing integral representation for 7, (A) with s> — 1 (Ref. 25,
Eqg. 9.6.18) is substituted into (62):

Lay =38 (1 gy e
s 7Tl/2r(s+%) _1
Using (2), this relation yields the representation
R, (z,a,4,s5)
( )S ! 2ys =172, — A(1 + u)
APy ) T
XF, (2—A—Au,a~ A —Au). (75)

Equation (75) has the particular advantage that the range of
integration is finite.

Note that the restrictions s> — 1in (69) ands> — in
(72) and (74) do not diminish the usefulness of (70), (73),
and (75) in evaluating %, (2, a, 4, /) for negative integer j
sincethenI;(z) =1_;(z) and J;(z) = ( — 1Y J_;(2).

C. Limiting cases

The classical quantity corresponding to %, (see Refs. 2
and 29) is reproduced if (1 — it) is replaced by unity wher-
ever it occurs explicitly in Egs. (59) and (62):

R(z,0,4,8)~—a""%e~ I (A)Z(Jza="?). (76)
The approximation made to %, by many authors**=? when
a =0 is recovered from (70) in the limit |z|»1, |aq]| if
larg(z)| < 3#/2:

R,(z,a,A,5)~e *I (A)/z. (77
This result may also be obtained by replacing the factor
(1 — ir) by unity in (59) and (62).

If we substitute the asymptotic form I (A) for
larg(A)| <7/2 (Ref. 25, Eq. 9.7.1),

I (A)=~(27A) 7% [1 — (4% — 1)/8A + -],

into (62) we obtain the asymptotic series
R(z,a,A,5)~QuA) VA F,_1,(z,a)

— (47 - 1)F | _,,(2,8) /84 + ].
(79)

This result generalizes those of Lazzaro and Orefice®® and
Airoldi-Crescentini et al.; it requires A»s” for its validity.
Note, however, that the analytic properties of (79) are dif-
ferent from those which arise from an expansion of (62) in
powers of A (cf. Sec. III).

(78)
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V.INTEGRALS INVOLVING PDF’S

If we assume |4 | <1, then each of the Bessel functions in
(62), (70), and (73) may be approximated by the first term
in its ascending series:

Jo(u)>~Qu)/T (s + 1) =1 (u).

If we evaluate these three equations using this approxima-
tion and equate the results we obtain

F,s(z,a)

d 254+ 1
F(s+1)f xx exp( — *)
XF,_(z+x%a), r>l,

WHIL(s+1) (*
St |, e
Xyr—l/2(2+x2!a)!

Settingr =g + land s =
s=0in (81) we find

(80)

r>4. (81)
—}4in (80) orr=¢ + } and

F ai12(2,a) =27_1/2J dx exp( — x*).F (z+ X%, a).
[0}

(82)
This expression is a generalization of a result obtained by
Airoldi and Orefice'® in the case @ = 0. Setting 7 = 1 and
s=gq— 1in (80) orr=§ands=q—§in (81) we find

o 2
F , Q) = — d 21 —x?
¢(z,a) @) X x exp( — x°)
x/o(z+x2,a), (83)

which remains valid in the limit ¢ — 0. If a = 0 then (41)
implies'®

F,(z )—_1_ B -1 8"

F'(g)
Differentiation of (84) yields'?

. (84)
u—+z

r(q)F (Z)—(-l)r'J- duuq_l _“(u+z)—r'l
(85)

Airoldi and Orefice'® obtained the integral relation
«7,,+1/2(Z,a)=ﬂ'_l/2f dxexp(—xz)

XF,(z+x*—2a""x), (86)

which provides a useful link between the Shkarofsky and
Dnestrovskii functions. An equivalent relationship was ob-
tained by Fidone ez al." in the special case g = 2.

Further integrals: Upon setting r = 3 and @ = 0 in (80)
and replacing F, ,2(2) using (50a) and (A3) we find

1/2 d
F,
s+32(2) = F( D f X

Xx2s+1(z+x2)1/2 erfc[(z+x2)”2],
(87)

which generalizes Eq. 6.281 of Ref. 26.
Using F,(z) = €°E,(z) in (81) withr =
2B+ (s + 1)é&f
77T (2s + 1)

3 yields

F,

s+3n(2) =

f dx x*E,(z + x*). (88)
0
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Further integrals may be obtained by reference to the sec-
tions on the incomplete gamma function, the exponential
integral function, and the error function in Refs. 25 and 26.

VI. CONNECTIONS WITH PDF’S USED BY OTHER
AUTHORS

In this section we make explicit the relation between the
PDF’s defined here and those introduced by a number of
other authors. In several cases we modify the notations used
by these other workers to make the parameter dependence of
their functions explicit. We recall that the functions (1) used
in this paper correspond to those employed in most discus-
sions of electron cyclotron waves, including those by Dnes-
trovskii et al.,'® Airoldi and Orefice,'® Krivenski and Ore-
fice,”° and Robinson.'®* Moreover, the function W, (2, a)
used by Maroli and Petrillo?® and Bornatici e al.? is identical
with #  (z, a) as defined in (4a). The notations ¥ , (2, @)
and F,,(z) were introduced by Robinson'®; &, (z, a)
corresponds closely to the H function used by Airoldi and
Orefice."®

The original functions introduced by Shkarofsky'’ re-
sult from a series expansion of Trubnikov’s** integral formu-
lation of the plasma dielectric tensor; they are defined by

F(z,a,a)

= —iJW dt [y(z,a)] ¢
(o]

xexplz{1 — y(z,a)} —iazt ], (89a)
where z, g, and a are constants and with
¥z a) = [(1 —it)> + 2at?/z]'/2 (89b)

In the limit |a|<1.7 ;"™ (z,4,a) =F ,(z—za,a). De
Barbieri?® showed that a slightly different approach to the
calculation of the weakly relativistic dielectric tensor yields
plasma dispersion functions of the form (1); these appear to
be the only functions to have been extensively employed in
numerical calculations.

The functions Wq (z, a) were defined by De BarbieriZ®
to approximate & , (z, a):
Wq(z,a) = —if dt(1 —it) ~ T explizt — at?]. (90)

(1]

These functions satisfy many analogous relations to those
discussed in this paper for # _ (z, a) but their analytic prop-
erties are somewhat different.

Imre and Weitzner'? used functions closely related to
F,, and ¥, ,. In a modified notation their functions are

defined by

' o
FP(2) = _—rz(:}) fo dw w* !

X (w?—2*) """ Yexp( —w?), (91a)
aZ
F(za)= Z - Fyr¥(z), (91b)
i=o0 J:
where z and a are complex. We find
FP@)=(~1)F, (—-2°), (92a)
FP@a)=(-1VF,  (-2,a%. (92b)
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Imre and Weitzner'? also introduced the more general
PDF’s defined (with a change of notation) by

Z,, (za)=m"3" f d>x x}xp M_
7 — % +ax;

where || and 1 denote components of x parallel and perpen-
dicular to an arbitrary axis in three-dimensional x space.
These functions reproduce those introduced by Stix (Ref.
35, p. 177) and the usual plasma dispersion function'® for
appropriate choice of z, a, m, and n.

The function #, (z, a, A, s) was introduced by Lazzaro
and Orefice*® and Airoldi-Crescentini ef al.® in the special
case/ =3.

y o (93)

VIl. CONCLUSION

The properties of relativistic plasma dispersion func-
tions relevant to the description of cyclotron waves in weak-
ly relativistic, magnetized, thermal plasmas have been re-
viewed and a substantial number of new results have been
obtained. We have obtained new sum rules, differential
equations, and integral relations for the Dnestrovskii and
Shkarofsky functions and have investigated in detail the ana-
lytic properties of these functions and their connection with
standard transcendental functions such as the incomplete
gamma function. A more general class of PDF’s relevant to
waves with arbitrary perpendicular wave number also has
been defined and investigated for the first time and many
properties of these functions have been obtained.

The results of this paper should be of considerable use in
analytic work on electron cyclotron waves of all types and, as
mentioned in the text, in quantum electrodynamics in strong
magnetic fields. Numerical work will be facilitated by the
variety of calculational tools presented (sums, recursion re-
lations, continued fractions, integral forms, series, etc.).
Comparison of existing papers also will be made easier by the
results in Sec. VI, which relate many of the different PDF’s
currently to be found in the literature to those discussed in
detail here.
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APPENDIX: THE PDF Z

The PDF Z(u) is defined as follows for Im(«) > 0 [with
analytic continuation to Im(u) <0]":

2
Z(u) _”_1/2f dr SP(=17) (Ala)
t—u
2
=27y f dr R (Alb)
t°— u
An alternative definition valid for all u is
Z(u) = 2i exp( — u?) j dtexp( —t?), (A2)
which yields'?
Z(u) = ir" exp( — u®)[1 + erf(iu)]. (A3)
The differential equation satisfied by Z () is'?
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B2W) _ [t +uzw). (A%)
du
The following series and asymptotic series apply**
. © ( _ uZ)/ﬂ_l/Z
Z(w) =ir"exp( —u?) —u \ (A5)
P & TGAD
@ —1~2]
Z(u)~ir o exp( — 1) — 3~ E(zfﬂ)
j=0
|u|»1 (A6)
with
0, Im(u)>0,
o=11, Im(u)=0,
2, Im(u)<O.

Symmetry relations and other properties of Z(u) are
discussed by Fried and Conte.'* The general behavior of
Z(u) for complex u may be seen from the modulus-argu-
ment plot of the function w(u) = Z(u)/ir'/? given in Ref.
25 (Fig. 7.3, p. 298).
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A new class of “solvable” nonlinear dynamical systems has been recently identified by the
requirement that the ordinary differential equations (ODE’s) describing each member of this
class possess nonlinear superposition principles. These systems of ODE’s are generally not
derived from a Hamiltonian and are classified by associated pairs of Lie algebras of vector fields.
In this paper, all such systems of #<3 ODE’s are integrated in a unified way by finding explicit
integrals for them and relating them all to a “pivotal” member of their class: the projective Riccati
equations. Moreover, by perturbing two parametrically driven projective Riccati equations (thus
making them nonsolvable in the above sense) evidence is discovered of chaotic behavior on the
Poincaré surface of section—in the form of sensitive dependence on initial conditions—near a

boundary separating bounded from unbounded motion.

I. INTRODUCTION

In recent years there has been great progress in the
mathematical analysis of nonlinear dynamical systems of n
first order ordinary differential equations (ODE?’s)

ﬂ Exi = E (X,t ) ’
dt

x=(x,,...,X, ), which are coupled in a nontrivial way. For
example, it has been widely recognized that most (nonlin-
ear) dynamical systems (1.1) are, in general, nonsolvable,
by the known analytical methods, and possess classes of so-
lutions, which depend extremely sensitively on the initial
conditions, giving rise to regions of so-called chaotic behav-
ior in phase space.!® The presence of these chaotic regions
is, in fact, a consequence of the nonintegrability of (1.1), i.e.,
of the nonexistence, in general, of n global, independent,
analytic integrals of the motion.'”

There are, however, many physically interesting inte-
grable examples of systems (1.1), which have attracted the
attention of many researchers: they correspond to special
choices of the functions F, (x,t), and are of practical impor-
tance, in that minor deviations from these choices are not
likely to bring about major changes in the overall behavior of
the system. Recently, there has been considerable progress
in the identification and analysis of completely integrable
Hamiltonian systems,”® where (1.1) are Hamiltonian’s
equations of motion, with n = 2N, and (x,, x,, ») NN canoni-
cally conjugate pairs.’

Our interest here is in the integration of a class of nonlin-
ear systems (1.1), which are not derived from a Hamilton-
ian, and which have been identified by the requirement that
they possess nonlinear superposition principles'®'?; this
means that their general solution can be expressed in terms
of a finite number of particular solutions.

In this paper, we identify by their Lie algebras, all sys-

(L.1)

i=12,.,n,
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tems (1.1) with #<3 having superposition principles, find
simple integrals of motion for them, and obtain their general
solution by relating them all to a “pivotal” member of their
class: a system of n projective Riccati equations.'' In some
cases we were even able to do this for arbitrary values of n.

We thus completely integrate, in a unified way, all inde-
composable systems of n = 3 ODE’s (1.1) with superposi-
tion principles, identified in the Appendix by the general
classification of Ref. 13. It is worth noting that these systems
could also have been integrated using the particular superpo-
sition rule valid in each case, or by embedding them all in
higher-dimensional linear systems with time dependent co-
efficients.'!-1

However, the new integration method presented here
has several advantages of its own: it is simple, direct, and
reveals a deep connection between all these systems and a
single one of them—the projective Riccati equations. More-
over, it is reminiscent of a similar approach, recently intro-
duced, to find exact integrals of two-degrees-of-freedom Ha-
miltonian systems.®

It was recently shown that all indecomposable systems
of ODE’s with (nonlinear) superposition principles are re-
lated to the transitive primitive action of a Lie group Gon a
homogeneous space G /G|, (see Ref. 13). Thus, to each alge-
bra-subalgebra pair {.#,.%}, defining a transitive primi-
tive Lie algebra, we can associate a family of ODE’s, whose
representative is unique up to a choice of coordinates on
G /G, i.e., up to an arbitrary invertible change of dependent
variables in the equations.

The Lie algebra .Z, corresponding to the Lie group G, is
the algebra of vector fields in Lie’s theorem.!*!! The subal-
gebra £, corresponding to the isotropy group G, of the
origin in G /G, consists of vector fields vanishing at the ori-
gin. The pair {.%,.%} is said to determine a transitive
primitive Lie algebra if (i) .7, is a maximal subalgebra of
£ and (ii) ., does not contain an ideal of .%.
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The number of ODE’s corresponding to a pair {.%,.%,}

ile,lS

n=dim .Y — dim .Z,, (1.2)

All the families of transitive primitive Lie algebras and their
corresponding systems of ODE’s integrated in this paper are
explicitly constructed in the Appendix starting from
{&,.%,} pairs with n<3 in (1.2). For n = 3, we find four
types of indecomposable systems of real equations with su-
perposition formulas: (a) projective Riccati equations
(PRE’s) associated with the Lie algebras .# = sl(4,R) and
Z,=aff(3,R) (affine transformations of a real, three-di-
mensional vector space); (b) one type of conformal Riccati
equations (CRE’s) associated with the Lie algebra pair
£ =o(4,1)and .Z, = sim(3); (c) one type of CRE’s asso-
ciated with .¥ = 0(3,2) and ., = sim(2,1) [sim( p,q) is
the similitude algebra of p + ¢g-dimensional Minkowski
space]; and (d) a system of three real equations with fourth-
order polynomial nonlinearities associated with the Lie alge-
bra.? = su(2,1) and a subalgebra .7 of affine transforms.

In addition to these four systems of equations we consid-
er two more types, one related to the action of . = sp(4,R)
and the other to .¥° = sp(2,R) @ sp(2,R). These “symplec-
tic Riccati equations” (SRE’s) for n = 3 are equivalent to
one of those discussed above, but their integration presents
new features and the equations have independent physical
interest. In any case, for n > 3, the SRE’s are not equivalent
to any other of the systems described here. Finally, we also
consider the only two independent types of complex ODE’s
with n =3, having superposition formulas: the sl1(4,C)
PRE’s and the o(5,C) CRE’s.

We have successfully applied our integration method to
all indecomposable systems of (n = ) 3 ODE’s with super-
position principles. Whether it is more generally applicable,
for n arbitrary, is still an open question. So far, we have
integrated, by “dimensional reduction” (see Sec. II), sys-
tems of n projective Riccati equations. We have reduced sys-
tems of n conformal Riccati equations to n + 1 PRE’s (Sec.
III) and shown (see the Appendix and Sec. IV) that a sys-
tem of 2( p — 1) real “pseudounitary Riccati equations”
[based on SU( p,1)] has the form of a system of p complex
PRE’s with one additional constraint. Since the complexity
(and number) of these systems increases significantly with
increasing 7, we have chosen to postpone the analysis of oth-
er n> 3 cases to a future publication.

In Sec. II we integrate a system of » real {or complex)
projective Riccati equations by a successive “‘dimensional
reduction” to a system of (n — 1), (n — 2), etc. PRE’s,
down to a single Riccati equation. To do this, all we need to
know at the k th stage is one particular solution of the corre-
sponding system of k¥ PRE’s.

In Secs. III and IV we reduce a system of n conformal
Riccati equations, two systems of three symplectic Riccati
equations and one system of pseudounitary ODFE’s to sys-
tems of projective Riccati’s, to which the dimensional reduc-
tion of Sec. II can be applied. This is done in a unified way as
follows: Consider the subgroup G, C G that acts linearly on
the space G /G,. Find its quadratic invariant «(x,,x;,...,X, )
(if it exists) expressed in terms of the coordinates on G /G,
and use it as an (n# + 1)st dependent variable. The resulting
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ODE’s describe the time evolution of x;(¢) and «(¢) in a
consistent manner, and are cast in the form of (n + 1) pro-
jective Riccati equations.

Finally, in Sec. V, we discuss our results in connection
with recent work on the integrability of non-Hamiltonian
systems possessing the Painlevé property'*!* (i.e., whose so-
lutions have no movable singularities in the complex  plane
other than poles)."® In fact, all systems discussed in this pa-
per do possess the Painlevé property, since they are lineari-
zable, in a precise sense, in spaces of higher dimensions.'!~!3

To demonstrate, however, what can happen to the solu-
tions of our systems, when the equations are slightly modi-
fied away from their integrable Painlevé-like form, we inte-
grate numerically, in Sec. V, a set of two parametrically
driven, perturbed projective Riccati equations. What we find
is that in “sensitive regions” of phase space—e.g., near a
boundary separating bounded from unbounded motion—
the solutions appear to exhibit, indeed, a chaotic behavior. In
particular, we observe an extremely sensitive dependence on
the choice of initial conditions,'™ on a Poincaré surface of
section.

Il. INTEGRATION OF PROJECTIVE RICCATI
EQUATIONS

Since they turn out to play a central role in the integra-
tion of all other systems of ODE’s with superposition princi-
ples discussed in this paper, we integrate first a system of
projective Riccati’s (PRE’s), written in its most general
form as'!

X, =a,+ Y b,x, +x, Y cx, 2.1)

v=1 v=1
u=12,.,n, wherea,, b,,, and c, are arbitrary functions
of ¢.

It has already been shown'? that the general solution of
(2.1) can be expressed algebraically in terms of n + 2 generi-
cally chosen particular solutions. Moreover, it is also known
that, with the substitution x, =y, /yo, 4 = 1,2,...,n, (2.1) is
transformed into a system of n + 1 linear equations. This
transformation shows by itself that the PRE’s are of Painlevé
type, since the only possible movable singularities they can
have are poles [zeros of y,(#)]. For special choices of a,,
b,,, and c,, PRE’s commonly arise in physical applica-
tions.'’

In this section, we present an alternative approach to
integrating (2.1) by “dimensional reduction,” i.e., by using
at each step one particular solution of & PRE’s to reduce the
system to k — 1 equations of the same type. Thus, with n
particular solutions (one for each system of n, n — 1,...,2,1
PRE’s), the general solution of (2.1) can be obtained by
quadratures.

To see this, all we need to demonstrate here is the first
step of this procedure, since all subsequent steps can be per-
formed in exactly the same way: Denoting a particular solu-
tion of (2.1) by x, = a,, (¢), we introduce new variables y,
in (2.1),

x, =y, +a,), p=12..n, (2.2)
in terms of which (2.1) becomes
Bountis, Papageorgiou, and Winternitz 1216



.}.’# = z_:kBlwyv +ylt Zlcvyw B = 1""’”’ (2'38)
where
B, =b,, +a,c, +6, Y cia;, (2.3b)
A=1

and the inhomogeneous terms have dropped out, since a(¢)
is a particular solution of (2.1).

Multiply now the uth equation (2.3) by y, and the nth
equation by y, and subtract to obtain

n n
j’gyn “.}.’nyp = Yn ZIBI‘V‘V" _yy Z]B’“’y”’

p=12,.,n—1. (2.4)

Dividing both sides of (2.4) by y2 and introducing the new
variables

2, =Y Vur #=12,.,n—1, (2.5)
we find that (2.4) takes the form of (n — 1) PRE’s:
n—1 n—1
2, =B,+ Y Cu.z,—2, > Bz, p=1.,n—1,
v=1 v=1
(2.6)
with C,, =B, —§,,B,,.

This procedure can now be repeated (n — 1) times
down to a single Riccati equation, which, after being made
homogeneous by a particular solution, can be solved easily
by quadratures, i.e., by a linear ODE of first order. The gen-
eral solution is now obtained by going up the “ladder” of the
PRE systems described above, solving by quadratures, at
every step, a single homogeneous Riccati in the denominator
variable of the transformation equations. At the last step, for
example, knowing all thez,, u = 1,...,n — 1, as functions of ¢
and (n — 1) arbitrary constants, we express the y, in (2.5)
in terms of y,, substitute them in the u = n equation (2.3)
and solve the final Riccati

n—1 n-1
j’u =yn{ ZIBPVZV +Bnn} +ﬁ{vzlcvzv + Cn}’
(2.7)

by quadratures, to find the nth arbitrary constant, and hence
the complete solution of the problem.

The integration method described above is especially
efficient for systems of PRE’s whose coefficients are inde-
pendent of ¢. In that case, the particular solution a(#) of
(2.1) can be chosen with all its components a,, constants
satisfying the algebraic PRE equations a, + 2b,,a,
+a,3c,a, =0. The coefficients in the dimensionally re-
duced PRE’s (2.6) will also be constants and this will be
continued all the way down to the single equation (2.7),
which can be directly integrated.

Hil. INTEGRATION OF CONFORMAL RICCATI
EQUATIONS

We now proceed to illustrate our general method of inte-
grating systems of ODE’s with superposition formulas, on
the conformal Riccati equations (CRE’s) (A7),

% =B+ Ex + ax + x(y" Ix) — jy(x" Ix),

EI+IET=0, 3.1)
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(YTz)=p,z, + - +VpZp = Vp+1Zp41 — = VprgZpug
by reducing this system of n { =p + ¢) equations ton + 1
projective Riccati’s. The simplest way of doing this is to in-
troduce the invariant O( p,q) length as a new variable
u(x) = (x,x) = (x" Ix). (3.2)

[Note that O(pg)=G, is the subgroup of
O( p + 1, g + 1) that acts linearly on the considered space. ]
As a consequence of the CRE’s, the variable u satisfies

i =ul(y"Ix) +2a] +2(B " Kx). (3.3)
Thus, combining (3.1)-(3.3), we immediately arrive at the
desired system of n + 1 PRE’s in x and u:

x =B+ Ex +ax —jyu + x(y" Ix),

i =2(B"Ix) + 2au + u(y" Ix).

34)

To solve this system, we can use the method of dimen-
sional reduction, described in Sec. II. At t =0 we impose
(3.2) as part of the initial conditions; Egs. (3.4) then guar-
antee that this condition will hold for all ¢, so that x will
indeed solve the CRE’s (3.1).

An alternative (but equivalent) approach, which turns
out to be more convenient to use in some other cases (see
Sec. IV), is to look for integrals of (3.1) of the form

C=u(x) + (fF Ix) + £, (3.5)
where 1 (x) is the invariant (3.2), and f==( f,,...,f, ) and f,,
are functions of ¢ to be determined as follows: Setting
dC /dt = 0and using Eq. (3.3) for & and (3.1) for x we find
first that the quadratic (in x,) terms identically cancel out.
Since the resulting equation must hold for all x, we set the
coefficients of the linear (in x;) terms equal to zero and
arrive at the following system of ODE’s for f and f,;:

f= —2B+af + Ef+ foy — (Y7 I1),

fo=2af,— (BTI) —{/,(y"ID),
again a set of (n + 1) PRE’s to be solved by the method of
Sec. I1.

Now the n + 1 independent solutions (f’, f§) of (3.6),
i=12,..,n+1, provide n+ 1 independent integrals of
(3.1) of the form (3.5), i.e,,

Ci=ux)+(ETRK)+fy, i=1.n+1 (3.7)

Subtracting the C”* ! integral from all the others leads to
linear inhomogeneous algebraic equations for the n compo-
nents of x

(BT —fr+UN)x) = C = C*+1 — fL 4 f7+1 (3.8)

from which we can directly obtain the general solution x(¢)
of the CRE’s (3.1).

(3.6)

IV. INTEGRATION OF SYMPLECTIC AND
PSEUDOUNITARY SYSTEMS OF ODE’S

In this section we integrate two different types of sym-
plectic Riccati equations with n = 3 introduced in the Ap-
pendix for the group G = Sp(2N,F) [cf. (A11)] and for the
group Sp(2N, F) @ Sp(2X, F). Both can be reduced to equa-
tions we have already integrated in the previous sections.
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However, since for # > 3 this reduction can no longer be done
and since their actual form is sufficiently different from
CRE’s and PRE’s, we proceed to integrate them here inde-
pendently. To do this, we apply the integration procedure
described in Sec. II introducing a new variable ¥ (x), which
is the invariant of the subgroup G, CG acting linearly on
the corresponding space G /G,,.

We start with the SREI system of Eq. (All), which,
with N =2 and n = N(N + 1)/2 = 3, yields the following
system of ODE’s:

E=cy +2a,x+2a,) + 8% + 281X + 822V
y=cptayux+ (@ +ap)y+apz+gxy  (4.1)

+ 81232 +5") + 802,
Z=Cp+2ay Y+ 2852+ 81,V + 2812 V2 + 8207

wherec;;, a;;, and g; are the matrix elements of C, 4,and G in
(A11), respectively. The subalgebra of sp(4,R) that acts
linearly on the space (x, y,z) is sl(2,R) given by the matrix 4
(with C=G=0). The invariant of the corresponding
group SL(2,R) to be used in the construction of integrals of
the form (3.7) is the det W, i.e.,

u(x) = — det W= ——det(; ’z’) =y —xz.  (42)

Using (4.1) we find the corresponding ODE for # and com-
bine it with (4.1) to obtain a system of four projective Ric-
cati equations for the variables x, y, z, and u

X=0Cy+ 20X + 245y + U

+ x(g11X + 28120 + 82:2),
y=cp+2a,x+ (a, +a3)y+a,z
— 8ot + Y(811X + 2812 Y + 8222)s (4.3)

Z=0Cy+ 205y + 2052 + 81U

+ 2(g11x + 2812 Y + 8202)s
U= —CpX+ 2§ — €12+ 2(a, + ap)u

+ u(g1 X + 28125 + 8222)-
This system of PRE’s can again be solved by dimensional
reduction as in Sec. II, with the constraint (4.2) imposed at
t = 0 as part of the initial conditions.
The SRE2 system, on the other hand, related to the
semisimple Lie algebra . = sp(2NV,R) @ sp(2N,R), see Eq.
(A24), for N = 1, takes the form

x=a,+ by — bz + a,( —x* +yz) — a,xz — a,xy,
y=a,+2bx —2by—2apy +ax’—as ), (44)
z=a, — 2byx + 2b,z — 2a,xz — a,2* + azx.

The subgroup of Sp(2,R) ® Sp(2,R) that acts linearly on the
underlying space (x, y, z) isitself G, ~Sp(2,R) ~SL(2,R).
Its invariant is det ¥ and hence we set for our u(x)

4(x) = —det V= —det(’z‘ Y (4.5)

)=x2+yz.

Calculating now @ with the aid of (4.4) and combining the
equations for x, y, z, and u together we obtain again a special
case of PRE’s

x=a,+byy—bz+au—x2ax+asy+az),
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y=a,+2bx —2b,y + au —y(2a,x + a5 + a,2),
(4.6)
z=ay —2bx +2b,z+ azu —z(2a,x + ay y + az),

u=2ax+a,y+a,z—u(2ax +a,y+ a,z),
which can be solved by dimensional reduction, with the con-
straint (4.5) imposed at z = 0.

Finally, we turn to the “pseudounitary” ODE’s (A19)
of the Appendix, based on the action of SU( p,1). The sub-
group of SU( p,1) that acts linearly on the corresponding
Grassmannian is SU( p — 1) and its invariant is precisely
the “unitary length” defined in (A18) by

u(f) = —4(gLE) = =3 &+ +EX 6.
4.7)

Here, however, the original equations of the system are al-
ready in (complex) projective Riccati form

E=ic+ (@+a®)+ (BLE) +L [ —ifE + (848)],
(4.8)

E= —B+8 +EE+a*E+E[ —if ¢+ (8481,

where { = u + ix, cf. (A17). We thus prefer to solve this
system of PRE’s directly (e.g., by the method of dimensional
reduction), choosing initial conditions such that (4.7) is sat-
isfied at t = 0. Since (4.7) is a group invariant, it will then be
satisfied for all £>0, and the complete solution of the prob-
lem will have been determined.

V. EVIDENCE OF CHAOS IN A SYSTEM OF TWO
PERTURBED PRE’S

In recent publications'*'® there have been attempts to
connect the concept of integrability of dynamical systems to
the Painlevé property®® of their solutions in complex ¢. In
these investigations, dynamical systems (generally non-Ha-
miltonian) having the Painlevé property, were always found
to fall in one of three categories'*: they either (A) possessed
as many integrals as the order of the system, analytic in # and
polynomial in the dependent variables; (B) could be trans-
formed to a system of linear ODE’s (with time-dependent
coefficients); or (C) could be reduced to one of Painlevé’s
second- (or possibly higher-) order transcendental equa-
tions. '

Clearly, the above classification represents only a first
attempt at defining integrability in generally non-Hamilton-
ian dynamical systems. For example, there is an obvious
overlap between (B) and (A) above, since, for a system of n
linear ODE’s, we can always write down # integrals, as linear
combinations of the dependent variables, having as coeffi-
cients the elements of the fundamental solution matrix of the
system. Be that as it may, there is by now considerable analy-
tical and numerical evidence that dynamical systems pos-
sessing the Painlevé property have globally “regular” solu-
tions,”® while infinitely branched singularities in complex
time ¢ can lead to “chaotic” or “turbulent” motions in real
time.>!”

The systems we have analyzed in this paper belong to
category (B) above, since they can all be linearized in spaces
of higher dimensions.'? In that sense, they possess, of course,
the Painlevé property and are expected to be free from
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“strange attractors,” infinite period-doubling sequences, or
any other such type of chaotic phenomena.

To investigate how systems with superposition princi-
ples behave and what might happen if they are perturbed
away from their precise algebraic form, we have studied the
following system of ODE’s:

x=y+x(cx+629),

(5.1)

= — (2+ Qcos2t)x +y(cx +c3p).

Note that for ¢, = ¢, these two equations form a system of
PRE’s of the type we analyzed and explicitly solved in Sec.
I1, and possess the Painlevé property (generally violated for
¢35%¢,). Moreover, since all systems of ODE’s with superpo-
sition principles studied in this paper can be reduced to
PRE’s (see Secs. III and IV), we might expect the analysis of
equations such as (5.1) to have a wider applicability and a
more general significance.

Before taking ¢;7#c¢, to see what happens in the non-
PRE case, let us first take ¢; = ¢, and write down the general
solution of (5.1), as obtained, for example, by the methods
of Sec. II:

u
(K —c fuds—cyu) ’
where u(t) is the general solution of the Mathieu equation'®

d?u

dt?
Here K and the ratio of the two arbitrary constants in the
general solution of (5.3) are the two free constants in (5.2)

to be specified by the initial conditions x(0), y(0).

Take, for example, the case @ = O first: If we write the
solution of (5.3) as u = 4 cos ¢ (¢=y2t + 4,), solve Egs.
(5.2) for cos 4, sin @, and use cos® ¢ + sin’ ¢ = 1 to elimi-
nate ¢, we obtain a one-parameter family of conic sections

X(K?—c2) +y*(2K? — ) /4 4 ciexy
—2x+¢y—1=0, (5.4)
K'=K /A. Thus, for values of K > ¢ + ¢} /2, we find that
the exact solutions trace out ellipses around the origin of the
x, y plane, where the motion is oscillatory and bounded, see

Fig. 1. These ellipses limit on a parabola and for K "> < ¢?
+ ¢ /2 all solutions run away to infinity along hyperbolas.

ux(t)

) = ) (5.2)
u

x(t) =

+ (24 Qcos 2t)u =0. (5.3)

Unbounded ,«-"‘:"-5
Motion 4+

<

Unbounded
Motion

FIG. 2. One solutionof (5.1) at @ =0and¢; = ¢, — 0.1, ¢, = 0.3, ¢, = 0.6,
starting near the x <0 part of the boundary separating bounded from un-
bounded motion.

In the case ¢;#c¢, (and @ = 0), Egs. (5.1) no longer
possess nonlinear superposition rules and hence cannot be
integrated by the methods of this paper. Integrating them
numerically, we find that ¢; = ¢, — 0.1, for example, intro-
duces an overall dissipative effect on the motion and makes
the origin an equilibrium of the stable spiral type,* see Fig. 2.

On the other hand, for ¢; = ¢, and Q #0, Egs. (5.1) are
still of the projective Riccati type and the situation is not
very different from the Q = 0 case. The system, however, is
no longer autonomous and Egs. (5.1) are not invariant un-
der time translations. Thus, together with the initial condi-
tions (x(Zy), ¥(t,)), the initial time ¢, must also be specified
for a unique determination of each solution (since now solu-
tions can intersect themselves on the x, y plane, without be-
ing necessarily periodic).

To take this into account, we shall study the system
(5.1) in the extended phase space x, y,t making use of the
periodicity of the time-dependent term Q cos 2¢. In other
words, we shall consider Poincaré “surfaces of section”'™
and plot orbits (i.e., intersections of solutions) in the x, y
plane at ¢ = k= intervals (k, integer). One such section is
shown, for example, in Fig. 3 for three orbits corresponding
to three different initial conditions.

Interestingly enough, the conic sections of Fig. 3 can
also be obtained analytically starting with (5.2): Evaluating
x,yatt = km, we eliminate sin (k) and cos(akm) (aisthe

y

Unbounded - '5
Motion

FIG. 1. Solution trajectories of system (5.1) with ¢; = ¢, and Q = 0, given
by the conic sections (5.4), for three different initial conditions within the
region of bounded motion; ¢, = 0.3, ¢, = 0.6.

FIG. 3. Intersections of solutions of (5.1) at ¢; = ¢,, with the surface of
section x, y at t =0, + 7, + 2m,..., for three different initial conditions
within the region of bounded oscillations.
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Unbounded .~ 115 -
Motion ' -

Q=0.2

FIG. 4. Intersections of one solution of (5.1) with the Poincaré surface of
section, with initial conditions very close to the x < 0 part of the boundary;
¢; =0.3,¢, =0.6, c; = 0.5. Note that, at @ = 0.2, curves spiraling towards
(0,0) can still be confidently traced through the points.

Floquet exponent’®) as described above, and arrive at an
equation similar to (5.4). The only difference now is that the
coefficients of the terms x2, 2, xy, etc. in (5.4) contain sums
of the Fourier coefficients of the Mathieu function solutions
of (5.3).

Taking now ¢; = ¢, — 0.1 and Q 7#0 we plot in Figs. 4
and 5, the intersections (¢#>0) of one solution starting in
each case with initial conditions y(0) = 0, and an x(0) very
close to the smooth boundary—which still exists'—separat-
ing bounded from unbounded motion. The existence of this
boundary can be verified by numerically integrating (5.1)
backwards, and observing all solutions tend to it as
t— — .

But, what is especially interesting about these two fig-
ures is the way the solutions behave near the x < 0 part of the
boundary: Observe the sudden changes in the direction of
the tentaclelike “curves” that could be traced through differ-
ent groups of points as they spiral towards the origin, for
Q=0.2, in Fig. 4. In fact, as Q increases further, these
“curves” change direction so sharply and accumulate near
the x <0 part of the boundary so densely, that it becomes
impossible to trace them out visually with any degree of con-
fidence, see Fig. 5. This results in a kind of transient chaotic
behavior on the Poincaré map: As long as solutions remain

Unbounded._,.y':';_l_5 . Q=05
Motion o

FIG. 5. Same as Fig. 4, at @ = 0.5. Note that here the intersections of one
solution wander around “chaotically” before settling in their spiraling mo-
tion towards the origin.
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close to this boundary, they oscillate in a very erratic and
irregular fashion and produce sequences of points that de-
pend very sensitively on the choice of initial conditions.

This sensitive dependence on initial conditions is gener-
ally accepted as evidence of chaos, or chaotic behavior in
nonintegrable dynamical systems.' It occurs most fre-
quently near the intersections of stable and unstable invar-
iant manifolds associated with (linearly) unstable fixed
points (or unstable periodic orbits) of the Poincaré map.
These intersecting manifolds can actually evolve into the so-
called “strange attractors,” about which so many results
have appeared in the recent scientific literature.*'°

Of course, the chaotic behavior we have observed here
has nothing to do with strange attractors, or any other of the
known “scenarios” of chaos, associated with different bifur-
cation phenomena.?® It does suggest, however, that chaotic
behavior—in the sense of sensitive dependence on initial
conditions—can also arise in certain regions of nonintegra-
ble dynamical systems that are expected to be “sensitive,” as,
e.g., near a boundary separating bounded from unbounded
motion.

Undoubtedly, different perturbations of systems of
ODE’s having superposition principles will produce differ-
ent nonintegrable dynamical systems, exhibiting a variety of
chaotic phenomena. What we described in this section was
but one example. A more complete investigation of such per-
turbations is currently in progress and new results will be
reported in future publications.

V1. CONCLUSIONS

Our main conclusion is that the existence of superposi-
tion formulas for equations of type (1.1) can be used as a
sufficient (albeit not necessary) criterion of integrability.
Moreover, for n<3 we have integrated all indecomposable
systems of such equations. In Sec. V we have indicated the
difference in the behavior of solutions of equations allowing,
or not allowing, superposition formulas, respectively.

It should be stressed that the classification of systems of
ODE’s obtained in the Appendix and listed in the Introduc-
tion is exhaustive for 7<3. Each set of equations obtained
represents an equivalence class of equations. Indeed, per-
forming an arbitrary change of coordinates on the space
G /G, (see the Introduction), i.e., an arbitrary invertible
and sufficiently smooth change of dependent variables x;

=@, ( Y15-¥y ) (i = 1,..,n) in (1.1), we obtain a system of
equations, that may look completely different, but shares all
the integrability properties of the original set of equations.

It is quite easy to identify a system of equations of type
(1.1) with a superposition formula, making use of a theorem
due to Lie.”" Indeed, in order to allow a superposition for-
mula, Egs. (1.1) must have the form

dx; r
B S Z, (106 ), =12, (6.1)
dt a=1
(for some finite r) and the vector fields
2 a
X%= e (X)—, a=1,.,r (6.2)
i;l;, ( ax,.
must generate a finite-dimensional Lie algebra
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(X% X2 =3 fuX" (6.3)

The vector fields (6.2) can be read off directly from the
equations. If they generate a finite-dimensional Lie algebra,
then the structure constants f;,. are given by (6.3). They in
turn completely identify the algebras L and L, of the Intro-
duction, and hence tell us in which equivalence class of equa-
tions we are. For further information on this subject we refer
to earlier publications, in particular Ref. 13.
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APPENDIX: INDECOMPOSABLE LOW-DIMENSIONAL
SYSTEMS OF ODE’S WITH SUPERPOSITION
PRINCIPLES

In this appendix we list all transitive primitive Lie alge-
bra pairs {.%,.% o}, -£ D%, which give rise to the systems
of n ODE’s, n<3, integrated in this paper. We make use of
the known classification of all transitive primitive Lie alge-
bras and write down the corresponding ODE’s explicitly, in
the low-dimensional cases analyzed in Secs. II, III, and IV.
For more details on this classification of Lie algebras and its
connection to systems of ODE’s as well as references to the
original work, see Ref. 13.

To start with, two main possibilities are distinguished:
either (i) .7 is a simple Lie algebra, with .# , being either a
maximal parabolic subalgebra or a maximal reductive subal-
gebra, or (ii) .7 is a semisimple (but not simple) Lie alge-
bra. There is a third possibility: that .# is not semisimple but
L =L+ V, where V is Abelian and ., acts faithfully
and irreducibly on ¥, thus being a reductive and in particular
simple or semisimple subalgebra. However, this case leads to
inhomogeneous linear ODE’s and will not be discussed
further since our interest here is in nonlinear systems.

In many cases we find it convenient to write down the
nonlinear ODE’s with superposition formulas for » arbi-
trary, and only afterwards reduce to 7<3. Thus, we do not
discuss here all possible families of such ODE’s but only
those that provide systems of n<3 equations. (Certain fam-
ilies start with n > 3, while others provide systems, which for
n<3 are equivalent to some we have already listed.)

It should also be mentioned here that the explicit form
of the systems of ODE’s we are considering is coordinate
dependent. Indeed, an arbitrary (invertible) change of de-
pendent variables will lead to different (but equivalent) sys-
tems of equations. Finally, although our emphasis in this
paper is on systems of #n<3 real equations, we also discuss for
completeness complex transitive primitive Lie algebras,
leading to n<3 complex equations.
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A. .7 is a simple Lie algebra
1. £ Is a maximal parabolic subalgebra

a. & =sl(N, F), F=R or C. We realize . by the
N X N matrices
CGFIXI, AGFIXk,

X_( c 4 )
“\—D —B/ DeF*<, BeF**

with TrC=TrB, I+ k=N, 1<k<Il. The subalgebra
7, = aff(Lk, F) corresponds to 4 = 0. Introducing affine
coordinates on the homogeneous space G /G, as in Ref. 13
and writing the corresponding ODE’s we obtain the matrix
Riccati equations (MRE’s)

W=A+ WB+ CW+ WDW, WeF'*k (A2)

The number of equations n = /k<3 only if kX = 1, whence
! = 1,2, or 3. We thus obtain a very important special case of
MRE’s: the projective Riccati equations (PRE’s)

x =a+ Bx + x(¢,x),

(A1)

or, in component form

X, =a,+ Y b.x, +x, ¥ cx, p=12..n
v=1 v=1 .
(A3)
which we solved in Sec. Il fora,,, ,,,, and ¢, arbitrary func-
tions of ¢.

b.L=0(N+2C)or.f =0o(p+ 1,4+ 1). Define
the matrices J and X by

0 I
e 7 1 X7+JxT=0, 1<k<g+1<p+1,
- ’ (P+X(p+q) =
L 0 XeF , P+q=N,
(A4)

where, if F=C, I=I,, , ,, while, if F=R, T
=, ,1_kq+1- ks 1, being the pXp identity matrix and 7,
the (i +j) X (i +j) identity with the lower j diagonal ele-
ments replaced by — 1. The algebra .Z here is realized by
the matrices

A BT C
xX=|p E —1B},

G —DTI —4T
A,C,GeF**¥ C+CT=0,

B,DEF(N+2—2k)Xk, G+GT=0’

EEF(N+2_2k)X(N+2‘2"), Ej+jET=O.
The subalgebra .Z is obtained by putting B =0and C = 0.
The number of ODE’s is

n=[(2N — 3k + 3)k /2],

(A3)

1<k<g<[(N +2)/2],
(A6)
with 7<3 occurring in three cases.
(i) The conformal Riccati equations are where k = 1
and p>¢>0 [ £ (~sim( p,g), the similitude algebra of the
( P + ¢)-dimensional Minkowski space]

x= —IB+Ex+ax+x(y"Ix) — ;-y(xTTx),

(A7)
B,y,xe F*=!, EI+JET=0, EeF"<", qeF,

F = C leadston complex equations (andf = I, ). For F=R
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and n = 2 we have the o(3,1) case with I = I, equivalent to
the case of one complex Riccati equation. For n = 3, two
inequivalent systems arise: 0(4,1) with 1 = I, and 0(3,2)
with T = I, integrated together as systems CRE1 and
CRE2 in Sec. III.

(ii) The orthogonal matrix Riccati equations with
k =N /2, N even, are based on o(N,C) or o(k,k),

Z=C+AZ+2Z47 - ZGZ,
Z= —ZTeFkxk ge Fkxk
C= —CTeFk*k G= — GTeF***

This gives a system of n = k(k — 1)/2 equations, which for
k = 3 reduces to n = 3 projective Riccati’s (A3) as a conse-
quence of the isomorphism between 0(6,C)) and sl(4,C)
and their corresponding homogeneous spaces [respectively
0(3,3) andsl(4,R)].

(iii) The o(2k + 1,C) or o(k + 1,k) Riccati equations
with k= (N—1)/2, N odd give again a system of
n=k(k + 1)/2 equations, which, for kK =2, reduces to
three PRE’s (A4), cf. Sec. II.

¢. & =sp(2N, F), a symplectic Lie algebra. Defining

(A8)

the matrices K; , and Xe F>V>*2¥
1
K ’ K ' K ( 0 I")
Ap=—] ! 0 ’ = —I# 0 ’
C A (A9)
XK;, +K;,,X"=0, A+u=N, i>], ‘
we realize the algebra .Z by the matrices
A BT o
X=| D E KB |,
—G —D'K —4T (A10)
A,C,GG F/l ></1, Ee F2;1)(2y’ DGFZ;LX/I
C=C", F=F", E=KE'K, BeF%**x4

and obtain .Z, by setting B = C = 0. The number of equa-
tions here is n =A(4N —-34 +1)/2, A =12,..,N. Thus
n = 2 does not occur, and » = 3 occurs only for N = 2 with
A=1lorA=N=2.

Now the A = 1 case is easily seen to lead to a special case
of n=2N — 1 PRE’.!> However, for A =N we get the
n = N(N + 1)/2 symplectic Riccati equations

W=C+AW + WAT + WGW, (ALL)
C,G,WeFN*¥ Cc=CT G=G7, w=w"

With N =2, (Al1) yields the system SREIL, integrated in
Sec. IV, with W= (%), cf. (4.1).

In view of the isomorphisms sp(4,R)~0(3,2) and
sp(4,C) ~o(5,C) both sets of n =3 equations based on
sp(4, F) can be reduced to 0(3,2) or o(5,C) equations.
Those for A = N =2 can be transformed into conformal
Riccati equations. Physically, however, they are quite differ-
ent and we integrate them here separately in Sec. IV. For
N> 2 the SRE’s are independent of any of the other systems
of equations.

d. . =su( p,q), a pseudounitary Lie algebra. Here, we
set
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J= I ,
I, 0

I=Ip—k,q—k9 N=P+q,

(A12)

where T denotes Hermitian conjugation. The algebra . is
thus realized by the complex matrices

A Bt Cc
X=|D E — 1B,
F —D'T —4t

A,CFeCk*k  EeC(p+1-2x(p+q=20)
— 2k %k
B,DEC(P+4 )X :

C+C'=0,F+F'=0,E'T+ IE =0. The algebra .%, is
obtained by putting B = C = 0, and the number of real equa-
tions is n = k(2N — 3k). We see, therefore, that n = 1 oc-
curs for su(1,1) (yielding the ordinary real Riccati equa-
tion), that n = 2 does not occur, and that n = 3 occurs only
forsu(2,1) (p=2,q=k=1).

A linear system associated with this transitive primitive
Lie algebra (.¥,.7,) is

(A13)

U, 4 Bt c \/U,
U,|={p E —B U, |,
U, F —D'T —4t/\U,
U, U,eC***, Uy eC (P+a—2xk (A14)

We remove the redundancy in the above homogeneous co-
ordinates by introducing the usual affine coordinates as ele-
ments of the matrices

Z,=UU;", Z,=UU;", detU,#0.

The transitivity of the SU( p,g) group action is imposed by
restricting to the Grassmannian of isotropic planes

UlU,+ UlIU, + UIU, =0,
ie.,
Z,+Zt+2Z31Z,=0. (A15)

In terms of the coordinates Z; the “pseudounitary Riccati
equations” are

Z,=C+AZ, +ZA'+B'Z,— Z,FZ, + Z,D'1Z,,
(A16)

Z,= —IB +DZ,+ EZ,+ Z,A' — Z,FZ, + Z,DIZ,,

subject to the cogstraint (A15). In particular, consider the
casek=qg=1 (I =1). If weput

Zi=ft=u+ix, Z,=E uxeR, EC’~!, (A17)
Eq. (A15) yields
U= _%(gT:g)y (Als)

while Eqs. (A16) reduce to

E=ic+ (@+a*)E+ (BLE) + ¢ [ —if + (8%8)],
(A19)

§= —B+8,+EE+arg+E[ —iff+ (8%6)]
(with stars denoting complex conjugation). Using (A 18) to
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eliminate ¥ = Re ¢ we obtain a system of n = 2p — 1 real
equations with polynomial nonlinearities up to order 4:

x=c+ (a+a*)x— (i/2)[(BE) — (E'.B)] +

+ (x/2)[(8%8) + (£,9)]

+ (/8 [(8%8) — (§",0)1(E"8)> — } f(EE)% (A20)
E= —B+idx+EE+a*t—45(5%6)

+E[fx+ (BNE)] + (i72)/E(EE).

In the case of su(2,1) we have p = 2 so that (A20) re-
duces to three real equations, since £ is just one complex
variable.

2 %, is a maximal reductive subalgebra

Requiring that n =3 be the number of equations
n=dim .¥ — dim .%,, leads to only two possibilities:
& =0(3,1) and .£, = 0(3) or o(2,1). [ Note that the cor-
responding complex Lie algebra 0(4,C) is not simple. ] Con-
sider the more general case .¥ = o( p,1), .Z o =o0( p), the
homogeneous space O( p,1)/0( p) can be realized as the
upper sheet of a two-sheeted hyperboloid x3 — x3 — - — X}
= 1. Using the linear equations satisfied by the homogen-
eous coordinates x,,, and introducing the projective coordi-
nates z, = X,/Xq, X, 70 yields

z; = Ap + Az — 2; Ao 2k,

A, = —A,ERP*P, A, = A eRP7P,

These equations are, clearly, again a special case of PRE’s.

Similarly, the second possibility, viewed as a special
case of .¥ =o(pl), Lo=0(p—11), on the space
O( p,1)/0( p — 1,1) realized as the one-sheeted hyperbo-
loid x? + x} + - +x2 — x3 = 1, leads in the projective co-
ordinates Z,=x,/x,, X,#0, to another special case of
PRE’s

2(1 =Allp +AQBZB _ZGAPBZB’
a,B=0,1,..,p — 1, where AeR‘?*+ D> (»+D gatisfies

AL, +1,,AT=0.

iLk=1,..,p,

B. .7 is a semisimple Lie algebra

As shown in Ref. 13 it is possible to construct transitive
primitive Lie algebras {.#,.% ¢} in which

L=KXKeoW, Lo=Hp, (A21)

where % is a simple Lie algebra and %", ~ %" is embedded
“diagonally” in .. In this case the number of equations in
the associated systems of ODE’s is

n=dim .¥ — dim ., = dim J/. (A22)

Thus, n = 1 or 2 are excluded, while n = 3 in the case of real
equations, yields two inequivalent possibilities.

(i) ¥ =su(2) ~o(3). In general, taking %~ = su(n),
we obtain a special case of the complex MRE’s (A2). More-
over, for n = 2, a low-dimensional coincidence occurs and
the su(2) @ su(2) equations turn out to be a special case of
the projective Riccati equations.

Similarly, taking ¥ = o(n) we obtain a special case of
MRE’s and, in particular, for n = 3 the same special case of
projective Riccati equations as above.
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(ii) ¥ =sp(2,R)~sl(2,R)~0(2,1) ~su(1,1). The
algebras sp(n, F) and o( p,q) lead to special cases of MRE’s,
while sl(n, F) and su( p,q) lead to more complicated types
of equations. In the low-dimensional case of three equations,
all of the above algebras %~ give equivalent results, namely a
special case of the projective Riccati equations.

This is best seen by choosing ¥~ = o( p,q). Using the
same techniques as in Ref. 13 for %~ = o(n,C) we obtain the
O( p,g) XO( p,g) Riccati equations

Iy _ _ nxn
V=A+ VB—BV—-VAV, A, BVeR"™", (A23)

Al, +1,47=0, Bl +1,,B"=0, VI, + I, VT=0.
Setting n = 3 and ( p,g) = (3,0) or ( p,g) = (2,1) we put

0 x y

V=] —x 0 2z],
e e 0
0 a b

A= —a 0 c|,
eb e O
0 d e

B=|-d 0 [},
ee ¢ O

where e= —1 for % =0(3) and e= +1 for

K =0(2,1) and obtain
X =a+ efy — €ez + x(ax — eby — ecz),

y=>b+fx —dz+ y(ax — eby — ecz), (A24)

z=c—ex+dy+z(ax — eby — ecz),

clearly a special case of the PRE’s.
Turning finally to the case with %" = sp(2n, F) we ob-
tain a system of symplectic matrix Riccati equations

V=A+VB— BV — VAV, (A25)

with
AKy+KAT=0, BKy+K,B"=0, VK,+K,)yT=0,

K":(—OI (I))'

In particular, for n = 1 we set

x y a a, b, b,
=G 2) a=Con) =G 5
z —x a; —a b; —b,

(A26)
and arrive at the SRE2 system studied in Sec. IV, cf. Eq.
(4.4). While equivalent to (A24), this system is of suffi-
ciently different form to merit a separate investigation.

Let us now summarize the results of this appendix by
listing all systems of #<3 real equations (F = R) integrated
in this paper.

(a) n=1: The only single nonlinear ODE of first order
with a superposition formula is the Riccati equation based
on the action of sl(2,R) ~0(2,1) ~sp(2,R) ~su(1,1).

(b) n=2: There are two types of indecomposable pairs
of nonlinear ODE’s with superposition formulas: (i) the
projective Riccati equations (PRE’s) (A3) based on
s1(3,R); and (ii) the conformal Riccati equations (CRE’s)
(A7) based on 0(3,1).
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(c) n=3: Four types of such indecomposable triplets
exist: (i) the PRE’s (A3) based on sl(4,R); (ii) the 0(4,1)
CRE’s (A7), with T = I,, (iii) the 0(3,2) CRE’s (A7) with
I= I,,; and (iv) the su(2,1) pseudounitary equations
(A19) (for p = 2) with polynomial nonlinearities of order
2,3, and 4. To these four, we add two more systems, which
we integrate in Sec. IV, namely, the symplectic Riccati equa-
tion (A11) with N = 2 and the sl(2,R) ®sl(2,R) equations
(4.4).

The situation is even simpler for F=C. Forn =1 we
obtain one complex Riccati equation, whose real and imagi-
nary parts when decoupled become two real 0(3,1) CRE’s.
For n = 2 the only indecomposable pair of ODE’s are the
SL(3,C) PRE’s [the O(4,C) CRE’s happen to be decompos-
able], while for n = 3 we obtain SL(4,C) PRE’s and O(5,C)
CRE’s.

'J. Guckenheimer and P. Holmes, “Nonlinear oscillations, dynamical sys-
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The Kadomtsev—Petviashvili (KP) equation (u, + 3uu,/2 + lu,,, ), + 3ou,,/4 = 0 allows an
infinite-dimensional Lie group of symmetries, i.e., a group transforming solutions amongst each
other. The Lie algebra of this symmetry group depends on three arbitrary functions of time “¢”
and is shown to be related to a subalgebra of the loop algebra 4 {’. Low-dimensional subalgebras
of the symmetry algebra are identified, specifically all those of dimension n<3, and also a
physically important six-dimensional Lie algebra containing translations, dilations, Galilei
transformations, and “quasirotations.” New solutions of the KP equation are obtained by
symmetry reduction, using the one-dimensional subalgebras of the symmetry algebra. These

solutions contain up to three arbitrary functions of ¢.

1. INTRODUCTION
The Kadomtsev—Petviashvili equation'
Q°(tx, yu)=(u, + juu, + ), + 3ou,, =0,
o= +1, (1.1)

sometimes called the two-dimensional Korteweg—de Vries
equation, is of considerable importance, both in physics and
mathematics. It arises in the study of long gravity waves in a
single layer, or multilayered shallow fluid, when the waves
propagate predominantly in one direction with a small per-
turbation in the perpendicular one.?- It also arises naturally
in many other applications, particularly in plasma physics,
gas dynamics, and elsewhere.

The mathematical interest of this equation stems from
the fact that it is, in a well-defined sense, the generic member
of a class of integrable partial differential equations, asso-
ciated with certain infinite-dimensional Lie algebras and
groups.”® It is one of the few equations in more than 1 + 1
dimensions that is integrable in the sense of allowing a Lax
pair, an infinity of conservation laws, soliton and multisoli-
ton solutions, a family of analytic periodic, and quasiperio-
dic solutions, and having many other interesting proper-
ties.>!!

The purpose of this article is to study the symmetry
group of the Kadomtsev—Petviashvili equation, i.e., the Lie
group G of transformations acting on the independent varia-
bles (1,x, y) and the dependent variable u, such that, when-
ever u(tx,y) is a local solution of (1.1), then
u' = [gou](t'x’,y’) is a solution for all geG such that the
function gou is defined.

Algorithms for calculating the invariance group of an
equation or system of equations are well known.'?"!” For a
good summary of this we refer to Olver'®!” and also mention
that computer programs using REDUCE,'® MACSYMA,'® or
other symbolic manipulation systems exist that greatly faci-
litate the calculation of the symmetry group of a system of
differential equations. This approach actually yields the Lie
algebra of the symmetry group.

*) Permanent and present address: Dipartimento di Fisica, Universitd degli
Studi di Roma “La Sapienza,” Piazzale A. Moro 2-00185, Roma, Italy.
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For the Kadomtsev—Petviashvili (KP) equation a
straightforward application of the algorithm, using a RE-
DUCE package has yielded an infinite-dimensional Lie alge-
bra of symmetries ,2° which we will call KP symmetry alge-
bra. Following the notations and results of Schwarz*® (and
correcting a slight misprint) we write a general element of
this Lie algebra as

V=X(f)+ Y(g) +Z(h), (1.2)
X(f)=f(d, + [Ixf () =30y’ F(D]9, +3¥f (D9,
— [/ 2P F (1) =3 F () +3uf (1)),

(1.3a)
Y(g) =g(1)d, — 30¥8(£)3, — (40/9)yg(1)d,, (1.3b)
Z(h) = h(1)d, +3h(1)d,, (1.3¢)

where f(t), g(t), and h(¢) are arbitrary functions in
C *(R), and the dots indicate derivatives with respect to 2.

In Sec. IT we discuss the structure of the symmetry alge-
bra and corresponding symmetry group of the KP equation
(1.1), establish a Levi decomposition, and identifying the
Lie algebra with basis given by (1.3) as a subalgebra of the
loop algebra 4 |, a Kac-Moody type of algebra.?’?> We
also discuss the physical meaning of the finite-dimensional
algebra obtained by restricting £ (2), g(2), and A (¢) to first-
degree polynomials.

Section III is devoted to a classification of low-dimen-
sional subalgebras of the KP algebra, namely those of dimen-
sion n = 1,2, and 3, into conjugacy classes under the adjoint
action of the symmetry group of the KP equation (the group
of inner automorphisms of the KP algebra). This is done
mainly to elucidate the structure of the considered infinite-
dimensional Lie algebra and to establish the applicability of
tools developed for classifying subalgebras of finite-dimen-
sional Lie algebras. We will only use one-dimensional subal-
gebras to perform a symmetry reduction. Three different
conjugacy classes of such subalgebras exist. A reader inter-
ested only in solutions of the KP equation can safely skip
most of Sec. III.

In Sec. IV we do indeed use the one-dimensional subal-
gebras of the KP algebra to reduce the KP equation to par-
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tial differential equations in two variables. These are the
Boussinesq equation, a once-differentiated Korteweg—de
Vries (KdV) equation, and a linear equation, respectively.
An arbitrary single solution of the Boussinesq equation will
provide a family of solutions of the KP equation, depending
on three arbitrary functions. A solution of the KdV equation
provides a family of solutions of the KP equation, depending
on two arbitrary functions. The linear equation obtained in
the third case is solved explicitly, yielding another family of
solutions involving three arbitrary functions of the variable
t. The physical meaning of the obtained solutions is dis-
cussed as well.

Finally, in Sec. V, we state some conclusions and the
future outlook.

Il. THE SYMMETRY GROUP OF THE KADOMTSEV-
PETVIASHVILI EQUATION

A. The symmetry Lie algebra

The Lie algebra of the symmetry group of equation
(1.1) was obtained by Schwarz?® and has been recapitulated
in the Introduction. By a symmetry operator, in this context,
we mean a vector field

V=r(tx, y;u)d, + y(t,x, y;u)d,

+ n(tx, y;u)d, + @(t.x, y;u)d, (2.1)
such that its fourth prolongation'®'” satisfies
pr¥PVoQ(t,x, y;u) oy <0 = 05 2.2)
where
OV=(u, + Juu, + u,,, ). +jou,, 2.3)

and the label o = + 1 distinguishes between the so-called
KPI and KPII equations.’ The operator pr'”’V has the form

Ux,

prYV=V+3 93, +3 o™
i ! i<y

+ 3 @

Uy x.
&2 XX

+ @ G (2.4)

i<j<k<l Ui’
where we have put x, = ¢, x, = x, x, = y. The functions ¢ ™,
etc. depend on x;, u, u, , etc. in a known manner'¢ through
the a priori unknown functions 7, y, 7, and @. These func-
tions are determined by requiring that Eq. (2.2) should be
satisfied whenever we have 17 = 0. The result of this proce-
dure is that the most general vector field (2.1) satisfying
(2.2) is given by (1.2) and (1.3) of the Introduction.

The commutation relations for this Lie algebra are easy
to obtain and are

[X(f XD =X(f1Fr— Frif2)
[X(£),Y(®)]=Y(f&—1f8),
[X(f).Z()] =Z(fh—1fh),
[Y(£,),Y(g:)] =30Z(£:8, — £:82),
[Y(8).Z(h)] =0,

(2.5)
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Notice that we obtain a Lie algebra only if the functions
f(2),g(¢), and A(t) are real functions of class C * on some
open subset of R. Notice also that the algebra
L ={X(f),Y(g),Z(h)} admits a Levi decomposition®*

L = S&N, (2.6)
where
N={Y().Z(h)} (2.7)

is a solvable (and actually nilpotent) ideal in L, namely the
nilradical (maximal nilpotent ideal) and

S={X(} (2.8)

isasimple Lie algebra. To convince ourselves that S'is simple
it suffices to note that it is isomorphic to the algebra

J(R) ={f(£)3|feC>(R)},

the algebra of real vector fields on R. The algebra J(R) is
simple according to a theorem of Cartan (Ref. 24, Theorem
XI, p. 129). The isomorphism is given by the mapping

(2.9)

¥ J(R)—S

f(E)F—X[f(D)]. (2.10)

B. The symmetry group of the KP equation

The infinitesimal symmetries V=X(f) + Y(g)
+ Z(h) given in (1.2) and (1.3) can be integrated to yield
the identity component of the group of finite transforma-
tions of the KP equation.

Let us start with the simplest case when f =g =0and
heC =~ (R) is arbitrary. We have

dx’' dy' dt' du’
EZ _pey), L=0 =0 £
() 7

=£i1(t’).
dA dA dA 3

(2.11)

Integrating and requiring that for A = 0 we obtain the identi-
ty transformation, we find

t'=t, xX'=x+Ah(t), y =y,
)
(' x,y)=ult'x —Ah(t'), y'] + Ah(t').

Thus, if u(z,x, y) solves (1.1), then u'(¢',x’, ') solves the
same equation in the variables ¢ ' ,x’, y'.
Now consider the case f (¢) =0, g(t) #0. We have

dx' 2 . , dy' ,
. = — / t' h t , —S— = t .
7 —03’3 g(t') +h(t) 7 g(t")
, (2.13)
dt’ du’' 40 .., ., 2h(t")
.__.=0, —_— — —— t )+‘——.
i i g V& 3

Integrating and imposing the appropriate initial condition
for A = 0, we have
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t'=t, xX'=x—A[108()y—h(®)] —i0g(DE(NA%, y =y+Aig(®),
u'(t',x',y') =u[tl,xl_'_glag(tr)yl__Ah(tl)’yl__Ag(tr)]

+ [Zh(st’) _%é(t’)(y’ —Ag(t")|A ~ %g(t’)é(t’)/i 2 2.14)

Finally, consider the generic case when f (¢)#0, with g(¢) and A (¢) being arbitrary. In order to obtain the finite
transformation we must integrate the equations

ar’ _ 9dx’ _ 3dy’
At 3 F() =209 f(¢') +9h(t') —6oy'g(t’) 2 f(t') +3g(t’)
1| — —_—dj. (2.15)
4oy f(t') —6x'f(t') + 18u' f(¢') — 18h(t’) + 120¥'g(¢’)
Introducing the notations
o0 = £, 6t =17 0F>[ 61 £,
to f(S) t
H(t't) = [f(z)]mf [30/772()8%(s) + h(s) f~*(s) s, (2.16)

we can integrate (2.15) and obtain
t'() =074 + (1),

yay) =+ G(t'(t),t)][f(t'(t)) 3

£
x'(tx,p) =[x— 2y 1 D) = f(O] 209 [2G(t'(t),t)f(t’(t))——3g(t) +3g(t'(t))[—-—-—f(t) ]2/3]

3

9/ (1) 9l flew)
20 [ ] 2 Ple? ] ’ [ f(t) 23 ' [f(t,(t)) 13
—_— | G(t'(2),t t (2 3G N ——— H s —_— , .
57 '@V flt' () +3G (' (1), )g(t’ (D)) FCO) ]+ (' t)] 0 (2.17a)
’ Pt ey — f(t(t')) 2/3l ’ [ - ) _ Zx,[f(t(tl))_ f(t')]
u'(t x5 Y )= f(t') u[t(t ) x(t x5y ),)’(t 'y )] 9f(t(t'))2/3f(t')l/3
do 26,0 [3 (1) Fle(t")) — Fle(e")F)

T OBLf(ee )PP F ()
— 9 £ (2(eRMe(2")) + gt fe(2)) + 38tV (D) + 9 (£)g(t") —€g(t") f(11)]

4 2 . . . . . .
-5 f(t(ff’)‘)zy,)f BT =2F @D+ FU JU) + FG R =3 )]

L2 gy gy 4 BIGHEDL ) 5 ) Fieey) = Foece)]

9£(2(t") 81f1(r")?
—%’—,’ﬁ;—’[sﬂtmwum)—g(r(r'))f(m')n
+3[ , h(t') ____ h(t’? ]+£[ ’gz(t(t')), 3 [g(t(t',))]z]],
3LAEN' B fea)] 9 L@y Praa)??  Lfe@n)
where &~ denotes the (local) inverse function of ® and where
Ht) =0 =4+ 0(t"),
ya' yy=[0y+G@t) ')1[% m, (2.17b)
x(£x',y) = {x' - 2ay'2[f(;(ft'()t),)_ SGO]_ 912,0(3;',) [ZG(t(t'),t )f (")) - 3g(e") + 3g(t(t’))[ﬁtt',—))) m]
_ 9;5,) [G(t(t'),t ')zf(t(t'))+3G(t(t'),t')g(t(t'))[?f(;((+'l))) m] +H(t(,f),tr)][%,’_))_) v
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Formulas (2.12), (2.14), and (2.17) give us new solu-
tions (#') from known ones (). In particular, if we take a
trivial solution u = 0, then (2.17) provides a family of solu-
tions depending on f (¢), g(¢), and A(¢).

It should be mentioned here that the KP equation (1.1)
is also invariant under certain discrete transformations, not
obtained by integrating the infinitesimal transformation
(1.3). These are the reflections R, and R,, defined as

R,: t-t, Py, (2.18a)

y
R,.: X—>—X, poyp, (2.18b)

>

X—>X, u-->u,

— —1, u—u.

C. A finite-dimensional subalgebra of “physical”
transformations

A systematic classification of finite-dimensional subal-
gebras of the KP algebra will be discussed below. Here we
just point out that all the “obvious” physical symmetries of
the KP equation are obtained by restricting the arbitrary
functions f(¢), g(¢), and A(¢) to be first-order polynomials
in t. Indeed, in obvious notations, we have

T=X(1)=4d,, D=X(t)=1t0,+xd, +¥3d, —ud,,
Y=Y(1)=4d, R=Y(t)=1t3, —ioyd,,
X=Z(1)=4d,, B=Z(t)=13,+%,. (2.19)

Thus T, Y, X generate translations, D generates dila-
tions, R has some properties of a rotation, and of a Galilei
boost in the y direction, and B yields a Galilei transformation
in the x direction. Thus, integrating, e.g., the vector field R,
we obtain

X=x—30ly+ %), t'=t,

y=y+a,
This transformation has been extensively used, e.g., by Segur
and Finkel® to “rotate” solutions of the Korteweg—de Vries
equation into solutions of the KP equation. The dilation
symmetry D = X(¢) has been used to generate similarity so-
lutions of the KP equation.?*2¢

The operators (2.18) form a basis of a six-dimensional
solvable Lie algebra L, = {D, R, B, X, Y, T}. It has a five-
dimensional nilpotent ideal (the nilradical)
N={R, B, X, Y, T}. The commutation relations for L, are
given in Table 1. It is a simple matter to classify and con-
struct all the subalgebras of L,, using known classification
methods.?”*® We will not present the result here since we
find a classification of all the low-dimensional subalgebras of
the infinite-dimensional symmetry algebra of the KP equa-
tion to be both more interesting and more useful for perform-

I (2.20)

TABLE I. The commutation relations for L.

D R B X Y T
D 0 IR B - -3y T
R —1iR 0 0 0 X -Y
B —3B 0 0 0 0 —X
X e 0 0 0 0 0
Y ¥  —jX 0 0 0 0
T T Y b'e 0 0 0
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ing symmetry reduction (see Secs. III and IV below).

Another finite-dimensional algebra, not contained in
L,, thatis of physical interest, is obtained by restricting f (z)
in X( f') to quadratic polynomials. We obtain X(1) = 7,
X(t) =D, asin (2.19), and in addition

X(t*)=C=1%9, +3(tx — 300*)d,

+4d, +4§(x —3tu)d,. (2.21)
The commutation relations are

so that we have obtained the algebrasl(2,R), with C generat-
ing a type of conformal transformation:

t'=1(1—A)"},
Yy =y(1—in~*3,

2
x'= [x 4ody
84y?

— (1 = At) 7?73,
3(1—/1t)]( )
“ =[u+ 1—/11+81t(1—/1t)2

(2.23)
4Ax

[2(1 -0)
— (2 —o)At ]](1 — A3,

D. Relation between the KP invariance algebra and the
affine Lie algebras of Kac-Moody type

An interesting feature of the KP algebra (1.3) is that it
contains a subalgebra that can be embedded into an affine
loop algebra. Indeed, let us consider the subalgebra L, of the
KP algebra (1.3) obtained by restricting the functions f, g,
and h tobe Laurent polynomials in t. A basis for this subalge-
bra is provided by

X(t")y=t"4d, + [%t"“‘ —zTan(n — 1)y2t”-2]8

X

2n n—1t [40 2,1 —3
—yt 3, —|—n(n-1 —2)yt"
+ 3 y y 27 ( )(n—-2)y

2n 2n
2 ey 2 t"“]t?“,
5 ( ) + 3 u
(2.24)

Yy =t"4, —zTanyt"“ax —%n (n—1)yy"-%4,

Z(t")=t"6x+3;it"_'c7u,

where n € Z.
The commutation relations of this subalgebra are [see
Eq. (2.5)]
[X(2"), X(t™)] = (m — mX(t"+ =),
[X(2"), Y(t™) ] = (m —gm) Y (2771,
[X(2™), Z(¢t™) ] = (m — ) Z("+m= Y,
(Y™, Y™ =30(n —m)Z(z"+ ™~ 1),
[Y(:™), Za™] = [Z4™, Zt™] =o0.

Let us now consider the eight-dimensional Lie algebra
L, generated by the following vector fields:

Ai=xd, +2vd, ~2ud,, Q=yd,,

(2.25)
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=4, X:=9,,
A:= —ay*d, +x9d,, S:i=yd,, (2.26)
P.=y*4d,, U:=4,.

The Lie algebra L, is solvable, its nilradical is spanned
by {Y,4, P, Q, X, S, U} and it contains a five-dimensional
Abelian ideal spanned by {P, Q, X, S, U}. It should be noted
that L, is not a subalgebra of the KP equation.

The solvable Lie algebra L, can be embedded into a sim-
ple Lie algebra . The simple Lie algebra of lowest dimension
that contains a five-dimensional Abelian subalgebrais 4, (in
Cartan’s classification), in particular sl(5,R) in our case.
Indeed, it is easy to verify that the traceless matrices

5§ —a op s u
0 0 —a q x
&£=10 0 -8 20y 0 (2.27)
0 0 0 ~10 -y
0 o0 0 0 18]

provide a representation of the Lie algebra L, with the pre-
scription that the matrix representing A is obtained by set-
ting § = 1 and all other entries equal to zero in &, similarly
for Y, etc. We see that the Abelian subalgebra spanned by
{P, 0, X, S, U} is contained in a maximal Abelian subalge-
bra of sl(5,R) with Kravchuk signature (2,0,3) (see Refs.
29-31).

Let us now establish a natural grading on L, by attrib-
uting the degree “n” to a monomial ¢” and the degree u
(0<u<4), equal to the distance from the diagonal in (2.27)
to elements of the algebra (2.26). Thus A has degree 0, 4 and
Y degree 1, Pand Q degree 2, S and X degree 3, and U has
degree 4 [the usual grading in the weight space of sI(5,R)].

We now construct a loop algebra out of (2.26) following
the procedure usually applied to simple Lie algebras.® Thus,
putting
X"y =4mt""'A+gn(n—1)1""’4

— (40/2T)n(n — 1) (n — 2)t" P+ t"3,,
Y(t*) =t"Y —jont" " 'Q — (4a/9)n(n — 1)t" 35,
Z(t™y=t"X+mu""'U, (2.28)

we see that the vector fields X (¢"), ¥Y(¢"),and Z(¢") form a
Lie algebra isomorphic to the subalgebra L, of the KP sym-
metry algebra whose commutation relations are given by
(2.25). Each element has a well-defined degree in the grad-
ing, namelyn — 1, n + 1, and n + 3 for X(¢+"), Y(¢"), and
Z(t"),respectively. From the embedding constructed above
for L, into sl(5,R) and from the representation given by
(2.28) for the Lie algebra L, we see that L is a subalgebra
of the affine loop algebra 4 {"’ defined by

AL = {R[5: "] esl(5,R)} o R[1,¢ -l]di. (2.29)
t

The Levi decomposition (2.6) also holds for L. In-
deed, from the commutation relation (2.25) we see that
N=A{Y(t"), Z(+")} forms a nilpotent ideal. The elements
X(¢") form a Lie algebra S isomorphic to the Z- graded alge-
bra8: = R[¢,t — ']d /dt. A basis for § is given by the collec-
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tion of derivations (d, ). defined by d, =t*d /dt with
commutation relations

[ddi]=(k—d; _,. (2.30)

As we restrict ourselves to Laurent polynomials, i.e., func-
tions with only a finite number of nonzero coefficients in
their Laurent expansion, it follows directly from the com-
mutation relation (2.30) that & is simple, i.e., it admits no
nontrivial ideal.

Let us finally remark that the link between & and the
algebra of regular vector fields on S ' has recently been inves-
tigated by Goodman and Wallach,*? who also study the Vir-
asoro algebra ©, i.e., the universal central extension of .

Ill. LOW-DIMENSIONAL SUBALGEBRAS OF THE KP
SYMMETRY ALGEBRA

In order to obtain solutions of the KP equation by sym-
metry reduction, we need to know the low-dimensional sub-
algebras of the KP symmetry algebra. More specifically, we
need subalgebras that correspond to Lie groups having or-
bits of codimension 3, 2, or 1 in the four-dimensional space
coordinatized by (#,x, y;u). We obtain all the required subal-
gebras and also derive a better understanding of the struc-
ture of the KP symmetry algebra by classifying all its one-,
two-, and three-dimensional subalgebras into conjugacy
classes under the adjoint action of the KP symmetry group.

A. Classification of the one-dimensional subalgebras of
the KP symmetry algebra under the adjoint action of the
KP symmetry group

In this subsection, we show that there are three conju-
gacy classes of one-dimensional subalgebras of the KP sym-
metry algebra under the adjoint action of the KP symmetry
group, with representatives spanned by X(1)=T,
Y(1) =Y, and Z(1) = X, respectively.

The approach we take is similar to the one followed in
the classification of the subalgebras of finite-dimensional Lie
algebras. The difference between the finite- and infinite-di-
mensional cases arises in that one obtains differential condi-
tions on the arbitrary functions labeling the group elements
whose adjoint action is used to cast the generators of the
subalgebras into normal forms, rather than algebraic condi-
tions on the parameters labeling the elements of the finite-
dimensional group.

We will use the explicit forms of the finite transforma-
tions of the variables (,x, y,u) associated to the infinitesimal
generators X(F), Y(G), and Z(H) [expAX(F),
expAY(G), exp AZ(H)]. They are obtained, respectively,
by setting f =F, g=h=01in (2.16) and (2.17), g= G,
h=0in (2.14) and h = Hin (2.12).

There are three cases to be considered in the classifica-
tion of the one-dimensional subalgebras of the KP symmetry
algebra, generated by typical elements of the form

V=X(f)+ Y& + Z(h), (3.1)

into conjugacy classes under the adjoint action of the KP
symmetry group.

Case A: f=0,g=0,and » #0. Weclaimthat V = Z(k)
with 4 %0 can always be transformed into X by an element of
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the KP symmetry group. Actually, as suggested by the com-
mutation relations (2.5) for the KP symmetry algebra, we
can choose F'so as to normalize 2 to 1in Z(4) by acting on it
with [exp(AX(F))]. (the adjoint action). Indeed, we have

F(I ) 1/3

F(e(t")) ax

2h(t(t WF(') — F(e(t"))]
9F (1(¢"))PF(t")*?

2h (t(t’))F(t(t’))]mi
3F(¢")*? ou'’

(3.2a)

It has been shown by Neuman®’ that there exists a function F
satisfying the relation

F(t )
Ft(t"))
Acting with [exp AX(F)]. on Z(h) willnormalizeh to 1, as

it is easily verified that (3.2b) and its differential conse-
quences substituted into (3.2a) give, dropping primes,

[exp AX(F)].Z(h) = Z(1). (3.2¢)

The existence of a solution to (3.2b) may be argued as
follows. Suppose that, for some 2 #0, (3.2b) has no solution
F. Then symmetry reduction by the corresponding Z (4) will
yield a reduced equation that cannot be equivalent under the
action of any element of the KP symmetry group to the equa-
tion obtained by reducing the KP equation by Z (1), namely
thelinear equation u ,, = 0. But we will see in Sec. IV, where
we construct all the solutions of the KP equation that are
invariant under the action of a one-dimensional subgroup of
the KP symmetry group having orbits of codimension 3 in
the space coordinatized by (z,x, y,u), that symmetry reduc-
tion by any V' = Z(h) with h 0 always gives rise to a re-
duced equation that is equivalent under the action of an ele-
ment of the KP symmetry group to the linear equation
u ,, = 0. Thus we arrive at a contradiction, and therefore a
solution to the functional equation (3.2b) must exist.

Case B: f=0 and g#0. We claim that
V= Y(g) + Z(h) withg#0 always can be transformed into
Y(1) by an element of the KP symmetry group. Indeed, as
suggested by the commutation relations (2.5) for the KP
symmetry algebra, we can first choose G so as to transform A
away from V by acting on it with [exp AY(G)]. . We have,
dropping primes,

[exp AX(F)].Z(h) = h (t(t'))[

(te))=1. (3.2b)

(exp AY(®)).V
20 d
=|h—"= = A——Gi]—+——
[ 3 .Vg+ 3 8. g gay
2h 4o . 4o, ] a3
77 —AG] ——/1 G |—.
3 9 5+ 9 € 9 g du

(3.3a)

It is now straightforward to show that, if in (3.3a) we choose
a function G(t) defined by
t
G(1): =2 ag [ (hg™) (srds + cg (3.3b)
0

where a0 and c are arbitrary constants, as the function
labeling the element Y(G) of the KP symmetry algebra and
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A =a~" as the value of the parameter A along the one-pa-
rameter subgroup obtained by exponentiating Y(G), we
have

[expAY(G)].V="Y(g). (3.3¢)

Now, as again suggested by the commutation relations
(2.5), we can choose F so as to normalize g to 1 in Y(g) by
acting on it with [exp AX(F)].. We have

[exp AX(F)]. Y(g)
—20[F(t(t"))]'?
3 [ F) yg(e")
4og(t (1)) ' [F(2(s")) — F(1')] ]_
OF (t(t"))*>F(¢")'/? ax'
, F(t') 2/3 a
+g(t(t") [ —
SN o) 3y
4oF (t(¢"))'?
27F(¢")*?
_ 8ay'g(t(t"))
81F (2(2"))PF(2")*/3
X [3F(t")F(t") — 3F(t(¢t))F (t(2")
+ F)F(t(t")) + Ft")? = 2F (1(t))?]
_ 40y’F(t(t’))“’3§(t(t’))]i
9F(¢')*3 '’

Ve O)F (")) —F(t))

(3.4a)

Now, by Neuman’s®® result we know that, given g(z) #0,
there will always exist a function F satisfying

Fe) ]m () =1
[F(m,)) glte)) =1

(3.4b)

It then follows that acting on Y(g) with [exp AX(F)]. will
normalize g to 1, as it is easily verified that (3.4b) and its
differential consequences, when substituted into (3.4a), give

[expAX(F)].Y(g) =Y(1). (3.4¢)

Case C: f+0. We claim that V=X(f) + Y(g)

+ Z(h) with f 70 always can be transformed into X(1) by
an element of the KP symmetry group.

The main steps of the calculation are as follows. As sug-

gested by the commutation relations (2.5) for the KP sym-

metry algebra we first can choose G so as to transform g

away from ¥, by acting on it with [exp AY(G) ].. Indeed, it
can be verified easily that if we take
G(t): = [C+af (gf‘s”)(S)dS]f(t)m, (3.5)
0

where a#0 and ¢ are arbitrary constants, as the function
labeling the element Y(G) of the KP symmetry algebra and
A = —a~! as the value of the parameter A along the one-
parameter subgroup obtained by exponentiating Y(G), that
we have

[expAY(G)].V=X(f)+Z(h). (3.6)
The next step, which again is suggested by the commutation
relations (2.5), is to choose the function H so as to transform

h away from X(f)+ Z(h) by acting on it with
[exp AZ(H)].. Again it is easy to check that if we take
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t
H(z): = [c+aJ (hf“'”)(s)ds]f(t)‘”, 3.7
(1]
where a#0 and ¢ are arbitrary constants, as the function
labeling the element Z(H) of the KP symmetry algebra and
A = —a~! as the value of the parameter A along the one-
parameter subgroup obtained by exponentiating Z(H), we
have

[exp AZ(H) ].(X(f) + Z(1)) = X(f). (3.8)

The last step is to choose the function F'so as to normalize f
to 1 in X( f) by acting on it with [exp AX(F)].. A tedious
but otherwise straightforward calculation shows that if Fisa
solution of the equation

Fle(tNF@)/Flee)) =1, (3.92)

then
[expAX(F)].X(f)=T. (3.9b)

The existence of a solution to (3.9a) for any f#0 again
follows from Neuman’s result.

Our proof of the existence of three conjugacy classes of
one-dimensional subalgebras of the KP symmetry algebra
under the adjoint action of the KP symmetry group with
representatives spanned by 7, Y, and X is thus complete. To
summarize, an arbitrary one-dimensional subalgebra of the
KP algebra is conjugate, under the KP symmetry group, to
precisely one of the following.

81,1 = {X(l)}, 81,2 ={Y(1)}1 21,3 = {Z(l)}
(3.10)

B. Classification of the two-dimensional subalgebras of
the KP symmetry algebra

Two types of two-dimensional Lie algebras {Y,,Y,} ex-
ist, both over R and C, namely Abelian algebras and solvable
non-Abelian algebras, satisfying, in an appropriate basis,
[Y, Y] =7,

We will take Y, in one of the three possible forms, estab-
lished above in Sec. IIT A, and let Y, be a general element of
the KP algebra. We first impose the commutation relations,
then simplify Y, using the isotropy group of Y, in the invar-
iance group of the KP equation.

1. Abellan algebras
(11)Y,=X(1)=T.

We take Y,=X(f) + Y(g)+ Z(h). Requiring
[Y,,Y,] = 0and using (2.5) wefind f = ¢ = 4 = 0. Hence
Y,=aX(1) + b¥Y(1) +cZ(1). Replacing Y, by Y}
=Y, — a¥, we effectively set a = 0 in Y,. Conjugating by
exp[AY(£) +uZ(1)], if b #0, we can arrange for c—0. If
b =0, then we put ¥, = Z(1). We thus obtain two distinct
algebras {X(1),Y(1)} and {X(1),Z(1)}.

(1.2) Y, =Y(1)=Y.

We again take Y, = X( f) + Y(g) + Z(h). The condi-
tion [Y,,¥,] =0 implies f =g =0, hence ¥, =aX(1)
+ bY(1) + Z(h). Wemust puta = 0, or we would reobtain
case (1.1). We put b = 0 by linear combination with ¥, and
obtain another algebra, namely {¥(1),Z(4)}. It should be
noted that the remaining freedom in the KP symmetry
group, namely the invariance of { ¥(1)} under dilations and
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time translations still could be used to give arbitrarily chosen
values to any two of the Taylor coefficients of the function
h(t). Hereafter we choose not to lift such trivial redundan-
cies for the equivalence classes of subalgebras labeled by ar-
bitrary functions.

(1.3)Y,=2(1)=X.

Requiring that Y, in its general form commutes with Y,
we find ¥, =aX (1) + Y(g) + Z(h). If a0 we reobtain
case (1.1). If a = 0, g#0 we reobtain case (1.2). fora =0,
g = 0 we obtain a new algebra {Z(1),Z(h);h #0}.

2 Non-Abelian algebras
(2.1) Y, =X(1).

The condition [X(1),X(f) + Y(g) + Z(h)] =X(1)
implies f=1, g=h=0. Conjugating by
exp[AY(1) + pZ(1)] we can transform g—0, ~—0. We ob-
tain a single algebra, namely {X(1),X(#)}.

(22)Y,=Y(1)

Imposing the appropriate commutation relation we find
Y, =3X(¢) +aX(1) + bY(1) + Z(h). We climinate b by
linear combination with ¥, and transform a and 4 into 0 by
conjugating by exp[AX(1) + Z(H)]. The new algebra is
hence {¥(1),X(3t/2)}.

(2.3) Y, =2Z(1).

The commutation relation implies Y,=X(3¢)
+aX(1) + Y(g) + Z(h). Conjugating by exp[AX(1)
+ Y(G) + Z(H)] we transform a—0, g—0, h—0. The al-
gebra that we obtain is {Z(1), X(31)}.

Let us sum up the results. Every two-dimensional subal-
gebra of the KP algebra is conjugate under the invariance
group of the KP equation to precisely one of the following
algebras [with the reservation that any two functions A(¢)

and e“h(t — ), where a and B are constants, give equiva-
lent algebras].

1. Abelian algebras:
82,1 = {X(l)’Y(l)})

22,2 = {X(l),Z(l)},
22,3" = {Y(l),Z(h)},
4" =1{Z(1),Z(h);h #0}.

2. Non-Abelian algebras satisfying [Y,Y,] = ¥;:
L5 ={X(1),X(},

2,6 = {¥(1),X(3t/2)},
L= {Zz(1),x(30)}.

C. Classification of the three-dimensional subalgebras
of the KP symmetry algebra

(3.11a)

(3.11b)

A real three-dimensional Lie algebra can be either sim-
ple or solvable. We will consider these two cases separately.

1. Simple Lie algebras

Let us first allow for complex coefficients in the vector
fields and construct the algebra s1(2,C). This algebra has a
two-dimensional non-Abelian subalgebra {Y,,Y,}. The
s1(2,C) commutation relations can be written as
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[YI’Y2]=Y1’ [YZ’Y3]=Y3: [YI,Y3]=2Y2- (312)

We will identify {Y,,Y,} with one of the algebras
(3.11b), i.e., consider it to be already in standard form.
Let us start with

22'5:Y1=X(1), Y2=X(t),
Y,=X(f)+ Y + Z(h).

Imposing (3.12) we find ¥, = X(22).
Next consider

LY, =Y(1), Y,=X(3t/2),
Y,=X(f)+ Y(g) + Z(h).

It is easy to see that [ Y,,Y,] = 2Y, cannot be satisfied. Fin-
ally, consider

82’72Y1=Z(1), Y2=X(3t),
Y;=X(f)+ Y@ + Z(h).

Again [Y,,Y,] = 27, cannot be satisfied.

We thus have obtained a single class of s1(2,C) algebras,
represented by {X(1),X(2),X(¢2)} [see also (2.21) and
(2.22)]. Restricting to real coefficients, we obtain sI(2,R),
but not su(2).

2. Solvable Lie algebras

A solvable three-dimensional Lie algebra always will
have a two-dimensional Abelian ideal (see, e.g., Refs. 34 and
35 for a classification of Lie algebras of dimension n<5 into
isomorphy classes). Unless the three-dimensional algebra is
Abelian or nilpotent, this ideal is unique (up to conjugacy
under inner automorphisms). We assume that the ideal
{Y,,Y,} is already in standard form (&, ,,..,8,,") and look
for a third element Y, = X( f) = Y(g) + Z(h) that acts
upon the ideal:

[Yl,Ys]] _ [a b] [Y,] M= [a b
(Y, Y1 le 4llv,) 7 " le dl”
The real matrix M in (3.13) can, by change of the basis of the
{Y,,Y,} space, be taken into a standard form and further
simplification can be achieved by rescaling Y. Finally, Y,
can be simplified by transformations in the KP symmetry
group that leave the algebra {Y,,Y,}, as a vector space, in-
variant.

Let us now run through this procedure for each two-
dimensional Abelian subalgebra in our list (3.11a).

a &, ={X(1)¥(1)}

Imposing (3.13) and using the commutation relations
(2.5) we obtain d=2a/3, b=c=0, and
Y, =aX(t) +aX(1) + BY(1) + yZ(1). Since X(1) and
Y(1) are elements of the algebra we can put a =8 =0. If
a#0 we apply exp[AZ(1)] to transform y—0; we obtain a
diagonal action in (3.13). If 2 = 0 we take ¥ = 1 and obtain
the Abelian algebra {X(1),Y(1),Z(1)}.

b &,,={X(1)2(1))

From the commutation relations (2.5) and (3.13) we

obtain Y; = aX(¢) + bZ(t) + yY (1) [up to linear combi-

nations with X(1),Z(1)]. If a#0 we apply
exp[AY(1) 4+ uZ(2)} and transform b—0, y—0; we obtain

(3.13)
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Y, = X(¢) and a diagonal action in (3.13). If a = 0 we must
have b #0 in order not to reobtain case 1 above. If y = 0 we
obtain the nilpotent algebra {X(1),Z(1),Z(¢)}. If y£0 we
apply exp AX(¢) and the discrete symmetry (2.18a) to ob-
tain another nilpotent algebra {X(1),Z(1),Z(¢) + Y(1)}.

¢ 8,,7={¥(1),Z(H)

The commutation relations imply ¢ =0,Y; = aX(3z/
2) +aX(1) + Y(g) + Z(h), where

§= — (30/2)bH, (3at+2a)H + (2d —a)H =0.
(3.14)

In this case we consider each normal form of the matrix M in
(3.13) separately.

a b 0 0
G.D [c d]=[0 ol

Then (3.14) yields the Abelian algebra {Y(1),Z(H),Z(h)}
[with H(¢) and h(¢) linearly independent] for a0 and we
reobtain {X(1),Y(1),Z(1)} fora =0.

a b 0 b
(32) [c d]=[0 al’ 470

a b a b]
[c d ] - [0 of” ¢ #0.
In this case the action of Y on the ideal is decomposable, but

not Abelian. Consider first the case a = 0,d #0. Then a #0
and (3.14) implies

f=a, H=e % g=g,+ (30ab/2d)e~*"".

Changing the basis in the ideal to {Y, — (b/d)Y,,Y,} we
diagonalize @M. Performing a conjugation by
exp[AY(G) + £Z(K)] with appropriately chosen G(t),
K(t), A, and 4 we obtain the decomposable algebra
{¥(1),Z(e~ "), X(1)}. Similarly, putting a#0, d =0, we
obtain, after some rather tedious calculations, a further (ine-
quivalent) decomposable algebra {Y(1),Z(t'/?), X(3t/
)}
(3.3) M nilpotent:

[a b] _ [0 1]
¢ dl 1o ol
Ifa#0weobtain H = 1,g = g, — 30t /2. Performing an ap-
propriate exp AZ(K) transformation, we obtain a nilpotent
algebra {Y(1),Z(1),X(1) — (3/2)0¥(£)}. If a =0, then
H = — 30¢ and g,h are arbitrary; we obtain a family of nil-
potent algebras {Y(1),Z( — 30%),Y(g) + Z(h);4#0}. The
dependence on g(¢) and A(¢) cannot be transformed away
and each couple g(¢), #(t) provides a different conjugacy
class of algebras.
(3.4) M diagonalizable; a#d, a#0, d 7#0.We put
a =1 and transform a—0 (by a translation in ¢). Then
f =3t/2,3tH= (1 —2d)H,g = — 30bH /2.Conjugating
appropriately by exp[AY(G) 4+ uZ(K)] we obtain a one-
parameter class of algebras { ¥ (1),Z[¢! =27 ], X (3t /2)}.
Since ¢ = 0 in M, the only remaining possible form of M
is a Jordan form.

a b 11
(3:3) [c d]z[o 1]'

or
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This, after conjugating by exp AZ(K), gives the algebra
{¥(1),Z(t =), X(3t /2) — (99/2) ¥ (¢ '*) }.
d 22_411 = {Z( 1)7Z(H)}

The commutation relations (2.5) and (3.13) in this case
imply

i{f=a+bH, — fH+ifH=c+dH  (3.15)
Moreover, we can take linear combinations of Z(1) and
Z(H) that will take M into its standard form:
Z,=aZ(1) +BZ(H), 2Z,=yZ(1)+06Z(H), with
ad — By #0. A further conjugation by exp AX(F) will then
take Z, into Z(1), Z, into Z(H '). We thus assume that M is
already in standard form.

0 0]

0 ol

We obtain one new Abelian algebra, namely
{Z(1),Z(h),Z(H)} with 1, h, and H linearly independent.

41) M=

'L 0]
. M= .
(4:2) [0 Ol

This leads to one new decomposable algebra:
{Zz(1),2z(+'?),Zz(3n}.
00
43) M= .
(4.3) 1 0

No new algebras are obtained.
1 0]
(44) M= [0 al
We find one class of algebras: {Z(1),Z(+' ~972),X(31)}.

(4.5) M=[ ¢ 1].
-1 a

This case corresponds to a “complex™ action on the ideal
(i.e., M could be diagonalized over C but not over R). From
(3.15) we see that we must have f (#) 0. To solve (3.15)
we depart from our usual procedure and first perform a
transformation exp[X(F) + Y(G) + Z(KX)] taking the ele-
ments Y,, ¥,, and Y, into X, = Z(h,), X, = Z(h,), and
X; = Z(1), respectively, where k, and h, are arbitrary lin-
early independent functions. The commutation relations
[X,.X;] =aX, + X, and [X,,X;] = — X, + aX, now im-
ply ,
h= —ah,—h,, hy,=h,—ah,.

Solving and performing an appropriate time translation, we
obtain thealgebras {Z (e ~* cos(t)),Z (e % sin(t)),X(1)}.

1 0
(4.6) M=[1 1].

We obtain a single class of Lie algebras, represented by
{Zz(1),Z(— 4 In()),X(30 }.

To conclude this section we present in a unified manner
a list of representatives of all conjugacy classes of three-di-
mensional subalgebras of the KP symmetry algebra, ordered
by their isomorphy class. The solvable algebras are all given
in the order {Y,,¥,,Y,}, where N = {Y¥,,Y,} is an Abelian
ideal and the action of ¥; on Nis givenin (3.13). In each case
we specify the matrix M.

00
1. Abelian, M = :
! 00
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23,1 = {X(l),Y(l),Z(l)},
L. ={¥Y(),Z[h()),Z[H()]}, h(t)#AH(1),

" ={Z(1),Z [h()),Z [HD]}, (3.16)
1,h(t) and H(?) linearly independent.
2. Decomposable, non-Abelian, M = [(l) 8]
L4 =1{Z(eH,Y(1),X(1)},
L5 ={¥(1),Z(+'?),X(3t /2)}, (3.17)
e ={Z(1),Z(t'),X(30)}.
) 0 1
3. Nilpotent, M = [ 0 O]:
&, ={Z@), - Z(1),X(1H},
e ={Z) + Y(1),— Z(1),X(1)}, (3.18)

205" ={Y(1),Z [ ~208()/3),Y [g(1)]
+Z[h(0)]}, &()#O0.

10
4. Diagonal action on ideal, M = [ 0 a]’ a#0:

83,10=-{X(1),Y(1),X(—t)]’, a=3%
Ly ={XM,Z()X(—-n}, a=},
L0 ={Y(),Z [1" 27 1,X(3t/2)}, a#0,
L' ={Z(1),Z [ =97 ],X(3t)}, a#0, a#l.

(3.19)

1
5. Complex action on ideal, M = [ _ (11 a]’ a>0:
14" ={Z [e~“cos(1)],Z [e~*sin(1) |, X(1)},
a>0. (3.20)

1
6. Jordan action on ideal, M = [ 0 :]

215 = {¥(1),Z(t ~¥),X(3t /2) + ¥Y( — 90t '3/2)},
(321)
s ={Z(D,Z[ -4 (1) ].X30}.

7. The simple Lie algebra s1(2,R):

L7 = {X()X(),X(£3)} [see (2.21),(2.22)].
(3.22)

Thus all isomorphy classes of three-dimensional real Lie
algebras except su(2) are represented in the list of subalge-
bras of the KP symmetry algebra.

It is easy to check in each case that there are no redun-
dancies in the above list except for the possibility of “normal-
izing” one of the arbitrary functions in an algebra by the
transformation A (¢t)—e”A(t — ). The different Abelian al-
gebras are mutually nonconjugate since a general element of
£, canbe conjugateto X (1), ¥(1),or Z(1), oneof &, ,*is
conjugate to ¥(1) or Z(1), an element of &, ;¥ is always
conjugate to Z(1). The functions 4(¢) and H(t) cannot be
changed in either case without destroying the standard form
of Y (1) or Z(1), respectively. In the decomposable case the
ideal {Y,,Y,} and the two-dimensional solvable subalgebra
{Y,,Y,} are well defined and distinguish between the three
cases. In the nilpotent case the center Y is uniquely defined.
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It distinguishes 2, 4** from the other two. An element of €, ,
can be conjugate to X (1) or Z(1), an element of £, ; can be
conjugate to X (1), Y(1), or Z(1). In all other solvable cases
the Abelian ideal is uniquely defined and suffices to distin-
guish between different mutually isomorphic cases.

IV. SOLUTIONS OF THE KADOMTSEV~PETVIASHVILI
EQUATION OBTAINED BY SYMMETRY REDUCTION

In this section we will apply our knowledge of the KP
symmetry group and its subgroups to construct all the solu-
tions of the KP equation that are invariant under the action
of a one-dimensional subgroup. In doing so we also complete
the proof of the assertion in Sec. III A, namely that there
exist precisely three orbits of one-dimensional subalgebras of
the KP algebra. The one-dimensional subgroups have orbits
of codimension 3 in the space coordinatized by (¢,x, y,u).
The method provides solutions that depend on three, two, or
one arbitrary functions of the variable ¢, in addition to the
arbitrary functions that may appear in the solutions of the
reduced equations, which are themselves partial differential
equations in two (rather than three) variables.

The method itself, called symmetry reduction, is very
simple and well known.'>63¢ It consists of taking a repre-
sentative of a one-dimensional Lie algebra V" and finding the
scalar invariants of the corresponding one-dimensional Lie
group exp A V. This amounts to finding a fundamental set of
solutions of a first-order linear partial differential equation

VI(tx,y;u) =0. (4.1)

Solving the corresponding characteristic system we obtain
two symmetry variables

§=80txy), n="(tx,y) (4.2)
and an expression for the solution
u(tyxyy) =a(t,x,_V)Q(§,"7) +B(t,xsy)- (4-3)

Here &, 1, @, and 8 are explicitly known functions obtained
by solving (4.1). On the other hand, q(&,%) is a priori not
known and is subject to a partial differential equation in &
and 7, obtained by substituting (4.3) back into the KP equa-
tion. The entire symmetry group then can be applied to the
solution (4.3) to obtain a larger class of solutions. Two equi-
valent approaches can be adopted. One is to make use of the
classification of one-dimensional subalgebras of the KP alge-
bra, established in Sec. III A. We then go through the above
procedure using the representatives of each conjugacy class
of elements. Thus, V'=X(1) =4, implies £ =x, 7=y,
a=1,8=0, and u(x,y) is a solution of the Boussinesq
equation. If ¥=Y(1) =d, we find § =x, n=1, a=1,
B =0, and u(¢,x) is a solution of the KdV equation, once
differentiated with respect tox. If ¥V = Z(1) = 4, we obtain
E=t,p=y, a=1,3=0, and u(t, y) satisfies the linear
equation u,, = 0. In each of these cases we then apply the
transformation (2.17) to get all solutions invariant under
the action of a one-dimensional subgroup of the KP group.
The solutions depend on up to three arbitrary functions.

A completely equivalent procedure is to perform the
same reduction using a general element

V=X(f)+Y(@) +Z(h) (4.4)
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and, as usual, considering separately the three cases
S () #0, f(t) =0,and g(1) #0, and f (1) =g(t) =0but
h(t) #0. No further group transformation is necessary in
this case.

We apply the second procedure, mainly because it will
confirm the result established when classifying the one-di-
mensional subalgebras of the KP symmetry algebra; namely
all the equations obtained when reducing by the generator of
a one-dimensional subalgebra under a transformation of the
KP symmetry group are equivalent either to the Boussinesq
equation, a differentiated KdV equation, or a linear equa-
tion. Let us just list the result in each case.

Case 1. f(t)=20:

w(tx,y) = f~gEm) + 2Lx 4 20287 ~3) y

9f 27 f?
40(2f2-3ff)y* 208 2
+ 81f2 + 9f2 +_’
- (4.5)
_ 208y | 20fy —1/3
§ [x+ 3f + 9f ]f

—f [ZT"gz(s)f—’“(s) +h(s>f“‘/3(s)]ds,
0

p=yf 2~ fg(s)f‘s“(s)ds.
0

Here u(¢,x, y) is a solution of the KP equation for any suffi-
ciently smooth functions f (¢#)#0, g(¢), and A(¢), if and
only if g(&,7) satisfies the Boussinesq equation

04y, + (qz)gg + iqggg =0. (4.6)
Case 2. f(t)=0, g(t)0:
u(tx,y) =g~ "q(&m) + &
3
L Qhg—ehy  o&-2%8)y ok’
3g? 9g2 282’

4.7)

§=g‘”2[x—iy+£g—y2 ,
4 3¢

t
7= Jg’m(s)ds.
0

In this case u(¢,x, y) is a solution of the KP equation if and
only if g(&,77) satisfies the once-differentiated KdV equation

(97 +399: + 39eec ] =0 (4.8)
Case 3. f(t)=g(t)=0, h{t):£0:
2h 4ok
tx, y) =q(t, —x ——— )~ 4.9
u(tx, y) =4q( y)+3hx 9hy (4.9)

Here (4.9) solves the KP equation for any sufficiently
smooth A(¢) if and only if g solves the linear equation

4,y =0. (4.10)
Integrating (4.10) we obtain a family of solutions of the KP
equation depending on three arbitrary functions of #

2h 4oh
t,x, = —X - — K L(?).
u(tx,y) 3hx 9hy+ 1)y + L(¢)

The classes of solutions of the KP equation presented in

(4.11)
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(4.5), (4.7), and (4.9) depend on three, two, or one arbi-
trary functions of ¢, in addition to the arbitrary functions
possibly appearing in the solutions of the reduced equations.
In general, they will diverge at infinity unless the functions
f, &, and h are appropriately restricted.

We now proceed to list some special cases of the above
solutions that are of physical interest and illustrate how f, g,
and A4 ought to be chosen so as to preserve decay at infinity.

Boiti and Pempinelli*’ have shown that the similarity
solutions of the potential Boussinesq equation

TWyy + (We)¢ + Ygee =0, (4.12)

obtained by setting ¢ = w, in the Boussinesq equation (4.6),
are of the form

w&n) =@ [£—V—0/3n] — (0/6)g,7

+V =073k + E/6+k, (4.13)

where g,, h,, and k are arbitrary constants. The equation
satisfied by w reduces to an ordinary differential equation for
@, which is equivalent to the first Painlevé transcendent
equation if g, #0 and to the equation for the Weierstrass p-
functions if g, = 0. It follows from (4.13) that

g=w,=3+¢'[£—V—0/39] (4.14)
satisfies the Boussinesq equation (4.6) and therefore that u,
as given by (4.5), is a solution of the KP equation. From
(4.5) we see that if we start with a solution of the Boussinesq
equation, which is bounded at infinity, the corresponding
solution of the KP equation given by (4.5) will have the
same property only if f and g are constants, say f,7%0 and
8o, While £ is arbitrary. We thus obtain two classes of solu-
tions of the KP equation depending on one arbitrary func-
tion A(¢) by performing a “Galilei-like” transformation, in-
volving an arbitrary function 4(#) on the solutions of the
Boussinesq equation arising from similarity solutions of the
potential Boussinesq equation. They are given by

u(tx,y) = —2(—g,/2) f5 VP (£)

2
L0 o 1
9f5 3fo 6
4.15
-8\’ —13, 2 —4/3 ( !
§=(""‘2‘_) [xfo +?0'gofo y
—fo“‘/’fh(s)ds———agzi o fo 7t
(1]
~ A /~——30(fo‘2/’y—gofo”’/3t) +§—’],
1
and
2085 2h(1) 1
u(tx,y)= —2fq* + +—-—+—,
(tx, ) fo P (x:8283) o T35, 76
2
x=xf¢ '+ 3%0/S s “y
(4.16)

oo [wos— Lagi 157

1235 J. Math. Phys., Vol. 27, No. 5, May 1986

-0 _ -
— _3‘(f0 By —gofo ).

[P,(&) is the first Painlevé transcendent, g (y.g8,.83) the
Weierstrass elliptic function.] Notice that certain restric-
tions must be imposed upon the constants f ', g,, 8,, 82, and
&, in order to obtain real solutions of the KP equation. In
particular the above solutions only can be real for the KPII
equation, i.e., when o = — 1. In addition, “lump”-type so-
lutions of the KPII are obtained from (4.16) when
8, = &; = 0, since we have p (¥,0,0) =y~ 2

From (4.7) we see that if we start from a solution ¢ of
the differentiated KdV equation (4.8) that is bounded, the
corresponding solution of the KP equation will share the
same property if and only if g and A are constants, say g,7#0
and A, This solution is given by

2,—2

u(tx,y) =g ’q(&m) —Yohlgs 2,

—_ 3/2t.

E=g5 " (x—hoy/8), M=8;
Solutions of the differentiated KdV equation (4.8) can thus
be “rotated” into solutions of the KP equation. This proper-
ty has been extensively used by Segur®* in his construction of
KP solutions of genus 1, which he obtains by rotating cnoi-
dal wave solutions of the KdV equation according to (4.17).
Of course, soliton and similarity solutions of the KdV equa-
tion also may be transformed into solutions of the KP equa-
tion, having physical significance. For example, the similar-
ity solution of the KdV?® equation

g&m) = — GOV (z,pu) + Vizp)], (418)

where z = 22/*¢(3n) ~'/3, and V(z, ) is the second Painle-
vé transcendent satisfying

Vi(z,u) =2V3(z, 1) +2V(z, p) +p — 4,

give rise to solutions of the KP equation via (4.17).

In view of the form of transformations (4.5) and (4.7) it
is quite possible to obtain bounded solutions of the KP equa-
tion from solutions of the Boussinesq or KdV equations that
diverge asymptotically. One way of obtaining such solutions
is to perform a different choice of symmetry variables than
the ones described above and thus to reduce to a different
partial differential equation in two variables. We have prov-
en that any choice is equivalent under the action of the KP
symmetry group to one of the three choices discussed above.
It is, however, possible for the group to transform bounded
solutions of an equation into unbounded solutions of an
equivalent one.

For example, let us choose the following symmetry var-
iables:

&= 18/3(g +glt)]l/3
30’h(2, hyy
4g,(g80+&11) & +8&it

(4.17)

(4.19)

031)’2

X\|x ’
3(go +8:1)
(4.20

7=31n[(g + £:1)/8]

where g,, g,, and A, are constants [this choice is different
from, but equivalent to, (4.7)]. It is easy to show that

u(tx,y) = — [8./3(8 + 8:1) 12>H&,1) (4.21)
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will satisfy the KP equation if and only if (&, 7) satisfies the
following nonlinear evolution equation:

Bounded solutions of this equation have been obtained by
Calogero and Degasperis'' using the inverse scattering
method. They are given by

F(E, ) =FHE—2*(7), p* (7)), (4.23)
where
3*(p.q)
=24(2 Ai'( p)Ai( p) + ¢{AI( P F'G(p.9) 1G(p.9),
(4.24)
G(pg) = (1 +q[AV(p)]* —gp[AI(P)]D) ™!,  (4.25)
Z*(1) =z% Y, p*(1) =pke =V, (4.26)

and Ai(g) denotes an Airy function. The solutions of the KP
equation defined by (4.20)—(4.26) contain the solutions ob-
tained by Nakamura®® as a special case.

We have shown that the use of one-dimensional subalge-
bras of the KP algebra makes it possible to generate large
classes of solutions of the KP equation. For this particular
equation the higher-dimensional subalgebras are of less use.
Indeed, consider the two-dimensional subalgebras, all of
which are listed in (3.11). Performing symmetry reduction
with any of these we obtain a system of two linear first-order
partial differential equations:

Y I(tx,yu)=0, Y,I(tx,yu)=0. 4.27)

Typically this system yields one symmetry variable £ and an
expression for the solution of the KP equation:

u(tx,y) =a(txy)q&) +B(tx,y), (4.28)

where a, 5, and £(¢,x, y) are explicitly known. Substituting
(4.28) into the KP equation we obtain an ordinary differen-
tial equation for ¢(£). The solution (4.28) then can be trans-
formed by a general transformation of the KP symmetry
group into a more general solution. However, one of the two
operators in (4.27), say Y,, will always coincide with one of
those used above to reduce the KP equation to the Boussin-
esq equation, the KdV equation, or a linear equation. The
other operator Y, then provides a further reduction. In other
words, we do not obtain new solutions but particular cases of
those discussed above.

V. CONCLUSIONS

The method of symmetry reduction for solving partial
differential equations is certainly not new: it lies at the origin
of Lie group theory itself.*® Several new factors have recently
emerged that should give new life to this old method.

The first is that many of the important nonlinear partial
differential equations of modern physics turn out to have
infinite-dimensional symmetry groups, the Lie algebras of
which involve arbitrary functions. Such is the case of the
Kadomtsev—Petviashvili equation treated in this article, but
also of other integrable partial differential equationsin2 + 1
dimensions. Thus, the “modified potential Kadomtsev—Pet-
viashvili” equation

[Une — 2(u,)* — du, ], — 6u, u, +3u,, =0, (5.1
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introduced by Jimbo and Miwa,’ turns out to have such a
symmetry group.'® The symmetry group of the Davey-
Stewartson equation*® [the (2 4 1)-dimensional Schro-
dinger equation] is also infinite dimensional.*!

The second factor is that methods have been developed
for classifying subgroups of finite-dimensional Lie
groups.?”283031 These methods can be generalized to infi-
nite-dimensional Lie groups and we have seen in this article
that it was not difficult to find representatives of all conju-
gacy classes of low-dimensional subalgebras of the KP sym-
metry algebra. A knowledge of the subgroups of the symme-
try groups is essential for implementing the program of
symmetry reduction.

The third new factor is the recent development of the
theory of infinite-dimensional Lie groups and Lie algebras,
in particular, Kac—-Moody algebras and the realization of the
important role they play in the study of integrable dynamical
systems. It is of interest to note, as pointed out in Sec. II, that
the symmetry algebra of the KP equation contains a loop
algebra structure.

Our future plans include a treatment of other (2 + 1)-
dimensional integrable equations and also an extension of
the methods of this article to include more general transfor-
mations (contact transformations and Lie-Bécklund trans-
formations'®). We also plan to consider the possibility of
combining Lie symmetries and Béicklund transformations
for the KP equation. Finally, a more complete classification
of the subgroups of the KP group would allow us to ap-
proach, in a systematic manner, the question of symmetry
breaking for the KP equation, i.e., the construction of relat-
ed equations, invariant under subgroups of the KP group,
rather than under the entire group.
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Solutions to a generalized spheroidal wave equation: Teukolsky’s equations
in general relativity, and the two-center problem in molecular quantum

mechanics
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(Received 9 July 1985; accepted for publication 3 January 1986)

The differential equation, x(x — x,) (d %y/dx*) + (B, + Byx) (dy/dx) + [0’x(x — x;)

— [2nw(x — %) + B;]y = 0, arises both in the quantum scattering theory of nonrelativistic
electrons from polar molecules and ions, and, in the guise of Teukolsky’s equations, in the theory
of radiation processes involving black holes. This article discusses analytic representations of
solutions to this equation. Previous results of Hylleraas [ E. Hylleraas, Z. Phys. 71, 739 (1931) 1,
Jaffé [G. Jaffé, Z. Phys. 87, 535 (1934) ], Baber and Hassé { W. G. Baber and H. R. Hassé, Proc.
Cambridge Philos. Soc. 25, 564 (1935)], and Chu and Stratton [L. J. Chu and J. A. Stratton, J.
Math. Phys. (Cambridge, Mass.) 20, 3 (1941) ] are reviewed, and a rigorous proofis given for the
convergence of Stratton’s spherical Bessel function expansion for the ordinary spheroidal wave
functions. An integral is derived that relates the eigensolutions of Hylleraas to those of Jaffé. The
integral relation is shown to give an integral equation for the scalar field quasinormal modes of
black holes, and to lead to irregular second solutions to the equation. New representations of the
general solutions are presented as series of Coulomb wave functions and confluent
hypergeometric functions. The Coulomb wave-function expansion may be regarded as a
generalization of Stratton’s representation for ordinary spheroidal wave functions, and has been
fully implemented and tested on a digital computer. Both solutions given by the new algorithms

are analytic in the variable x and the parameters B,, B,, B,, w, X,, and 7, and are uniformly
convergent on any interval bounded away from x,. They are the first representations for
generalized spheroidal wave functions that allow the direct evaluation of asymptotic magnitude

and phase.

I. INTRODUCTION

Generalized spheroidal wave equations have been the
topic of much applied mathematical research. They are
usually characterized as being second-order linear differen-
tial equations having two regular singular points and one
confluently irregular singular point. In this article the prob-
lem of generating general solutions to the specific equation
d 2
x(x — x) dx};

+ (B +B0) L
dx

+ [@®x(x — x5) — 20 (x — xo) + B;ly =0 (1

(where B,, B,, B,, w, 17, and x,, are constants) is approached
from the point of view of the computational physicist. Equa-
tion (1) will hereafter be referred to as “the generalized
spheroidal wave equation.” The intervals of physical interest
are both [0<x<x,] and [x,<x < ). Representations for
solutions on the bounded interval [0<x<x,] are well under-
stood, and are reviewed here only to illustrate properties of
three-term recurrence relations. The purpose of this paper is
to present new representations for solutions on the semi-
infinite interval [x,<x < ).

The differential equation (1) arises in two specific phys-
ical contexts: the separation of the one-particle Schrodinger
equation in prolate spheroidal coordinates, and the separa-
tion of linearized perturbation equations on the back-
grounds of Schwarzschild and Kerr black holes. (Teu-
kolsky’s equations governing perturbations of the Kerr
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metric are generalized spheroidal wave equations.) This pa-
per is an exposition on neither quantum mechanics nor gen-
eral relativity, and the physics underlying these equations
will be mentioned only in the context of boundary conditions
relevant to the solutions.

Researchers in both astrophysics and molecular physics
have long recognized the frequent inadequacy of numerical
integration techniques in supplying satisfactory solutions to
generalized spheroidal wave equations.'~ The original goal
of this study was the development of analytic representa-
tions for solutions to Eq. (1) on the interval [x,<x < )
that would be useful in the investigation of resonance phe-
nomena in low-energy molecular scattering processes. For
that end, we sought a representation that was both analytic
in the independent variable x and the parameters B, B,, B,,
, Xo, and 7, and from which the analytic behavior of the
solutions as x— oo could readily be inferred. The power of
the resulting Coulomb wave-function expansion is demon-
strated in an article on the spectral decomposition of the
perturbation response of Schwarzschild black holes.* The
present paper presents the new algorithm, and how we ar-
rived at it.

In the process it reviews earlier work of Hylleraas, Jaffé,
Baber and Hassé, Chu and Stratton, and Morse. These auth-
ors’ results form a natural starting point for this study, which
may be considered to be a continuation of their previous
efforts, and are a seemingly forgotten topic in themselves.
Review of their work is particularly worthwhile in view of
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enduring misconceptions concerning the convergence prop-
erties of some of their representations.

Lastly, we have discussion of two representations that
we have not yet used in computational problems, nor verified
numerically. They are the second solutions of Jaffé’s type
presented in Sec. IV C, and the confluent hypergeometric
function expansions of Sec. VII. The first of these (if it is
correct) may eventually be of considerable computational
utility. The second is more difficult to evaluate. The repre-
sentations of which we have made extensive computational
use are the regular Jaffé series discussed in Sec. IV A, and the
Coulomb wave-function expansion presented in Sec. VI. The
present (July 1985) computer implementation of these al-
gorithms is discussed briefly in the Summary. The paper is
outlined as follows.

Section II shows the equivalence of the separated parts
of the one-particle Schrédinger equation in prolate spheroi-
dal coordinates to the Teukolsky equations that describe the
perturbations of the Weyl tensor for Kerr black holes. The
angular and radial parts of both sets of equations are cast in
the common form of Eq. (1), and solutions at the singular
points x = 0, x = x,, and x = oo are discussed.

Section III briefly reviews the theory of three-term re-
currence relations and illustrates the usefulness thereof in
generating spheroidal harmonics and in obtaining the eigen-
values of the angular differential equation on the interval
[0<x<x,]. The origins of the method are lost in antiquity,
and most of the material in this section is stolen from more
recent articles by Baber and Hassé,® and Gautschi.®

Section IV turns to the study of solutions on the interval
[xo<x < 0 ), and starts with a review of the eigensolutions
of Hylleraas’ and Jaffé.® Convergence properties of both re-
presentations are discussed in detail, and an integral relating
the two is derived. Jaffé’s solution is of critical importance,
since it can be generalized to all values of the frequency w,
and provides solutions that are regular and analytic as
x—x,. Section IV C contains a rather lengthy digression on
the possibility of generating second solutions to the differen-
tial equation by means of a confluent hypergeometric func-
tion expansion related to the Laguerre polynomial expan-
sion of Hylleraas. The resulting expressions have yet to be
verified numerically.

Section V reviews Stratton’s classic solution to the ordi-
nary spheroidal wave equation, and generalizes Stratton’s
solution to the case of the Schriédinger’s equation for an elec-
tron in the field of a finite dipole. Rigorous proofs of the
convergence of the resulting spherical Bessel function ex-
pansions are discussed in detail, and form the basis for the
full generalization in terms of Coulomb wave functions pre-
sented in Sec. V1. The discussion in Sec. V is important be-
cause it shows for the first time how analytic solutions may
be constructed for a spheroidal wave equation in a space with
a nonzero potential.

Section VI presents the ultimate result of this study: the
expansion of solutions to the fully generalized spheroidal
wave equation (1) in convergent series of Coulomb wave
functions. The solutions provided by this representation are
both irregular as x—x,, but are analytic in the operational
sense that they allow the asymptotic (large x) behavior of
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any solution to the generalized spheroidal wave equation to
be computed directly from the value of the solution and its
derivative at any finite x greater than x,. The algorithm has
seen full computational implementation, and has been used
to characterize the nature of the perturbation response of the
Schwarzschild black hole to an appreciably greater extent
than has previously been possible.* Sections V and VI may be
read independently from Sec. IV.

Section VII presents another expansion for generalized
spheroidal wave functions as series of confluent hypergeo-
metric functions.

Section VIII looks at what happens to the generalized
spheroidal wave equation and its Coulomb wave-function
solutions (Sec. VI) in the confluence as x,—0. This happens
at the extreme Kerr limit of black hole rotation, and con-
cludes the present analysis of generalized spheroidal wave
functions.

Section IX is a summary and contains a brief description
of the computer programs that generate the Jaffé solutions
and the Coulomb wave-function expansions.

Lastly, it has not been possible for the present paper to
reference all the literature pertaining to spheroidal wave
functions, much of which is due to the efforts of Miexner er
al. The interested reader will find a comprehensive bibliog-
raphy in their recent monograph.®

Il. ORIGINS OF THE EQUATION AND ASYMPTOTIC
SOLUTIONS

Generalized spheroidal wave equations are ordinary dif-
ferential equations with two regular singular points and one
confluently irregular singular point. Although the Helm-
holtz equation separates in spheroidal coordinates into par-
ticular, and special, examples of such equations (ordinary
spheroidal wave equations),’® the earliest physical context
of a generalized spheroidal wave equation arose in the consi-
deration of the quantum mechanics of hydrogen molecule-
like ions. Early investigations into this subject are reviewed
by Baber and Hassé,®> and much of the discussion in this and
the following two sections is excerpted from their article.
Generalized spheroidal wave equations also result from the
separation of linearized covariant wave equations on black
hole background metrics, and the quasinormal modes of the
perturbations of these geometries may be found by the same
techniques used to determine the bound-state eigenfunctions
of the hydrogen molecule ion."* This section explores the
similarity of the differential equations in the astrophysical
problem to corresponding differential equations in the mo-
lecular ion problem, and reduces them both to the form of

Eq. (1).

A. Schrédinger equation for hydrogen moleculelike
ions

If N, and N, are the charges on two fixed nuclei 4 and B,
2a is the distance 4B between them, and 7, and r, are the
distances of an electron from A and B, respectively, then the
prolate spheroidal coordinates A and u are defined by
A= (r +r)/2aandu = (r; — r,)/2a. Atlarge values of r,
and r,, A becomes a simple measure of the distance from the
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molecule or ion, and is referred to as the “radial coordinate.”
Under the same conditions, 4 reduces to the cosine of the
usual polar angle 8, and y is termed the “angular coordi-
nate.” The time-independent Schriodinger equation
Vi + (E— V=0 separates if o¢=V¥(A)Pu)
X exp(img), where ¢ is the azimuthal angle about the axis
AB. A description of this separation is given in Eyring et al.'*
The resulting ordinary differential equations for ¥ and ¢ are

d dv
d_/l[(,iz_ 1)';2'] + [0)2/12+20(N1 + N,)A

— Ay, —m*/(A*=1)]¥ =0, (2)
and
4 [(1 —u?) ‘—19] + [ — o’ — 2a(N, — N)u
du du

+ Ay, —m*/(1 —p?)]® =0, 3)

where w? = 2¢*E in atomic units.

Equations (2) and (3) are generalized spheroidal wave
equations. If we write ¥=(12—-1)"%(1) and
® = (1 — u®)™g(u), the differential equations for fand g
are

(A% = 1)f s +2(m+ DAf, + [0*A% + 2a(N, + N,)A

+m(m+1)—4,,]1f=0, (4)
and
(1 —p?)g,, —2(m+ Dug, — [0’ + 2a(N, — Ny)u
+m(m+1)—A4,,]g=0. (5)

The form (1) is obtained if weletx = A + 1in Eq. (4), and
x=u + lin Eq. (5):
X(x—2) o +2(m+ D) (x— 1)f,
+ [@®x(x — 2) + 2a(N, + N,) (x — 2)
+@*+2a(N,+N,) +m(m+1) —A4,,1f=0,
(6)
x(x—2)g,, +2(m+1)(x—1)g,
+ [@*x(x — 2) + 2a(N, — N,) (x — 2)
+&*+2a(N,—N,) + m(m+1) —4,,]g=0.
(N
Generalized spheroidal wave equations are character-
ized by two regular and one confluently irregular singular
points. These occur at x = 0, x = x,, and at x = o, respec-
tively. For Eqgs. (6) and (7) the regular singularities corre-

spond to the physical locations of the two nuclei, which are
at the foci of the coordinate system, A = land uy = + 1. If

limy~x*, and Lim y~(x—xy)"*,

x—0 X—rXg
then the indices k, and k, take the values
k,=0, 1+4+B,/x,, and k,=0, 1-—B,— B,/x,

For Eqgs. (6) and (7) these values are 0, — m both for k, and
for k,.

B. Covariant wave equation on Schwarzschild and Kerr
backgrounds

A separable linearized partial differential wave equation
obeyed by components of weak electromagnetic and gravita-
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tional fields on the background geometry of the Schwarzs-
child black hole was derived through the efforts of
Wheeler,"® Regge and Wheeler,'* Zerilli,'*> Chandrasek-
har,’® and Chandrasekhar and Detweiler.!” Analysis of
wave equations on the Kerr geometry of rotating black holes
was provided by Teukolsky.'® Generalized spheroidal wave
equations result in each case.

1. Schwarzschild geometry

The Schwarzschild geometry is spherically symmetric,
and the partial differential equation for the field components
separates in polar spatial coordinates r, 6, and ¢, and
Schwarzschild’s time coordinate . These are the Schwarzs-
child coordinates.

Denote either a massless scalar field or a component of
the electromagnetic or gravitational fields by a generic field
function ®(z,7,6,4). Fourier analyze and expand ¢ in
spherical harmonics as

(I)(t’r’g,¢) — _I_.J e it
27 J- w

(3 L 41 (r) Y0 (6.4) )do. (8)
T r

The homogeneous differential equation obeyed by the Four-
ier component ¥, () is

r(r— 1)¢I,rr +¢I,r
2 —
+[“”3—1(1+1)+S2 1

r—1 r

]¢I =0’ (9)

where the coordinates 7 and » have been scaled so that the
horizon, which usually appears at r = 2M, is now at r = 1.
The parameter s is the spin of the field, and takes the values 0,
1, or 2 depending on whether @ is, respectively, a component
of the massless scalar, electromagnetic, or gravitational
field.

The history of the derivation of these perturbation equa-
tions is long and rich. The derivation of the radial compo-
nent of the scalar wave equation [s =0 in Eq. (9)] on the
Schwarzschild background is a straightforward exercise in
perturbation theory.'®?° The s = 1 equation for electromag-
netic perturbations was derived by Wheeler in 1955," and
the s = 2 equation for odd parity gravitational perturbations
by Regge and Wheeler a few years later.'"* A very similar
equation obeyed by even parity gravitational perturbations
was obtained by Zerilli in 1970,"° and the equivalence of
Zerilli’s even parity equation to Regge and Wheeler’s odd
parity equation [Eq. (9) with s = 2] was demonstrated by
Chandrasekhar'® and Chandrasekhar and Detweiler'” in
1975. This 20 years of effort has been summarized by Profes-
sor Chandrasekhar in Chap. 4 of his recent book.?!

Equation (9) may be put in the form of Eq. (1) by
means of the substitution

U (rw) =t (r—1) " “y(rw). (10)
The differential equation for y is
r(ir—Dy, +[2(s+1—iw)r—(2s+ 1]y,
+ [@*r(r—1) +20*(r—1) + 20> = I(I1+ 1)
+s(s+ 1) — (2s+ Diw]ly =0, (1)
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and the indicial structure at the regular singular points 7 = 0
and r = 1 is given by

r—0 r—1
y-»r"', y— (r—l)"’,

where k, =0, — 2s and k, =0, 2iw. With the signs for @
chosen in Eqgs. (8) and (10), the exterior (ie., 1<r< )
solution y that is regular at r=1 corresponds, for
Re(w) >0, to a field function that radiates into the horizon.
This is the physically meaningful case, but a second exterior
solution may be found simply by replacing by — w in Egs.
(10) and (11).

2. Kerr geometry

The geometry of the rotating black hole has oblate
spheroidal nature, and the wave equation for the compo-
nents of the massless fields can be separated in the oblate
spheroidal spatial coordinates 4, x4, and ¢, and a timelike
coordinate ¢. The coordinates A and z may be defined as in
Sec. II A for prolate spheroids, but the axis of oblate rotation
is the semiminor axis of the family of ellipses parametrized
by constant values of 4. The oblate spheroidal coordinate ¢
measures the azimuthal angle about the semiminor axis. The
singularities of the coordinate system, which are the fixed
locations of the two foci for prolate spheroids, become a sin-
gular ring of radius @ when the foci rotate about the semi-
minor axis.

Kerr’s spatial coordinates r and 6 are simply related to
the oblate spheroidal coordinates A and u by?*

r=a(A2—1)"2 and f=sin""'p.
Simplification of the Kerr metric is obtained by the introduc-
tion of the Boyer-Lindquist azimuthal coordinate ¢, which
isrelated to the azimuthal angle ¢ and the radial coordinate 7
by

dp = do + a(* — 2Mr + a*) " 'dr.
We will follow the usual convention of dropping the
from ¢ and denote the Boyer—Lindquist coordinates simply
by ¢, r, 6, and ¢. These coordinates reduce to Schwarzschild’s

coordinates as a—0. The Kerr metric in Boyer-Lindquist
coordinates is

ds* = (1 — 2Mr/2)dt? + (4Mar sin*(0)/2)dt do
— (2/A)drP — 2 d6?
— sin?(8)(r* + a* — 2Ma’r sin®(0)/2)d¢?,
where
S =r"+a*cos’ 0
and
A=7r—2Mr+ad>.

It is convenient to define one last angular coordinate
u = cos(f) = + (1 —u®)"2 The field function ®(z,7,u,4)
can then be expanded as

6 —299

(12)

3 1

1 * ;
®(t,r,u,d) =—f e e S, (u
27T — o l;sl m=z—1 ! )

XR,, (Pde (13)
and, after a rescaling of f and r so that 2M = 1, the following
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differential equations are obtained™® for the angular func-
tion S(u) and the radial function R(r):

[(1 = *)Smu ] + [FP0*u® — 2amsu + 5 + A4,,

— (m+suw)¥/(1 —uH)]S,, =0, (14)

and

AR, ,. + (s+1)@2r—1R,,, + V(r)R,, =0,
where
V(r) = [(P + @*)%w® — 2amor + a*m?
+is(am(2r — 1) — (7 —a*))]A™!
+ [2iswr — d’0® — A,,, ]

Equations (14) and (15) are the Kerr geometry linearized
wave equation analogs to the Schrodinger prolate spheroidal
equations (2) and (3). The functions R,,, and S, are re-
ferred to as “Teukolsky’s functions,”?! and we will now
show that they are, in fact, generalized spheroidal wave
functions.

Define an auxiliary rotation parameter b by
b= (1—44%)"'?, and define r, and r_ to be the zeros of A,
sothat A= (r—r_)(r—r,). Thenr, = (1 +b)/2,and
r =r_ corresponds to the event horizon. The solutions of
Egs. (15) and (14) at the regular singularities# = + 1and
r=r_ can be found in the usual way: if

(15)

lim S, ~(14+u)s,
1

Uu—r —

and
lim S, ~(1—u)%, (16)
u—+1
then
ky=+4(m—s), and k,= +}(m+5s).
Similarly if

lim R, ~(r —r_)*,

r—r_

and

lim R, ~(r —r )%,

r—r,

then
k_= — (i/b)(wr_ —am),
and

k., = (i/b)(wr, —am),

— 5+ (i/b)(wr_ —am),

—s5— (i/b)(wr, —am).

The physically meaningful solutions to the angular
equation (14) areregular at the axis (¥ = + 1), sothe usual
choices for k, and k, are k, = |m — s|/2 and k, = |m + 5|/
2. Similarly, the usual exterior solutions to the radial equa-
tion are those that correspond to fields radiating into the
event horizon at r=r,. This corresponds to
k, = —s—i(wr, —am)/b. Boyer-Lindquist coordi-
nates are not well suited to analysis of the physics of the
interior problem, but the choice
k_ = —s+i(wr_ —am)/b turns out to be convenient for
the present study restricted to just the differential equation.
Letting
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RI =(r—r )—s+(i/b)(wr_—am)
m -

X(r__r+)—-s—(i/b)(wr+-—am)y(r_r_) (17)
and

1

Slm — (1 _+_ u)(l/Z)}m—s\(l . u)(l/2)}ﬂl+s[g(u)’ (18)

then the differential equations for y and g are

x(x =8y, +[2(1 —s—iw)x + (s — 1 + 2iw)b — 2i(wr, —am)]ly, + [@*x(x — b)

+ 2@+ 5)o(x —b) + (1 +b—ad*)o” + (25 — )i + iswb — 25 — 4,,, ]y =0,

wherex =r—r_, and

2(z—2)g.. + [2(k, + ks + 1)z — 2(2k, + 1) 8.,
+ [ —d?0’2(z — 2) + 2awsz —s — A,,, — (s + aw)?
+ (ky+ k) (ky + &k, + 1)]g =0, (20)

where z=u + 1. These are generalized spheroidal wave
equations of form (1).

C. Exponents of the solutions near the regular singular
points x = 0 and x = x,, and asymptotic solutions

We may now take Eq. (1) to be our standard form for
the generalized spheroidal wave equation:
d?y

dx?

x(x — xp) + (B, + Bxx) L
dx

+ [@*x(x — x4) — 200 (x — Xxo) + B3]y = 0.

We recapitulate the solution forms at the regular singular
points. If

limy~x", and lim y~(x — x,)%, (21

x—0 X—vXq

then
k,=01+B,/x, and k,=0,1-B,— B,/x,.
Asymptotic solutions are found through the substitution
y(x) — xB,/ZXO(x _ xo) — (1/2)(B, +Bl/xo)v(x).

The differential equation for v(x) as x— oo is approximately

d% > 290 iB,(3B,—1)—B,
dx? + [a) T x x?
+O(x‘3)]v=0,

so that two independent asymptotic solutions for Eq. (1) are

lim y+ (X) - xB./Zxo(x _ xO) — (1/2)(B, + B,/x,)

X—> 00

X [G,, (nwx) +iF, (7,0x)]

X[1+0(x7)], (22)
and
lim y_(x) =xB|/(Zxo)(x ___xo) — (1/2) (B, + Bi/xp)
X [Gva (ﬂ,wx) —_ I'Fva (ﬂ,wx)]
X[1+0G79)], (23)

where F, (7,0x) and G, (7,0x) are the Coulomb wave
functions of (usually complex) order

v, =4[ — 1 + (1 4 B,(B, —2) — 4B;)'*].
To lower order, the asymptotic approximations simplify to
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(19)

I ) ]
lim y , (x)~x~((W/DBtmeriox[1 L O(1/x)]. 24)

X—> 0

Coulomb wave functions will be discussed further in Sec. V1.

Ill. THREE-TERM RECURRENCE RELATIONS AND THE
ANGULAR EIGENVALUE PROBLEM

Every representation of generalized spheroidal wave
functions discussed in this paper will involve either a power
series expansion, or an expansion in a series of special func-
tions. Since the expansion coefficients in each case will be
defined by a three-term recurrence relation, a review of some
properties of such relations is in order. The discussion here
will be quite brief, and is excerpted primarily from the first
few sections of the excellent article on three-term recurrence
relations by Gautschi.® The theory is illustrated by a simple
and relevant example of a sequence determined by a three-
term recurrence relation: the coefficients for a power series
solution to Eq. (1) about the regular singular point x = 0.

A. Power series solutions on [0<x < Xxp]

Equation (1) was
2

d’y

dy
- B, + Bx) 2
Hx = o) dx* + (Bt Bax) dx

+ [@*x(x — x4) — 2900 (x — x,) + B,]y =0.

Following Baber and Hassé,”> a power series solution about
x = 0 may be obtained by letting

y(x) = e~ i alx". (25)
n=0

We use the superscript 8 in this solution to denote its usual
association with the angular equations (3) and (14). The
sequence of expansion coefficients {a®: n = 1,2,...} is de-
fined by the three-term recurrence relation
+B35a; =0,

asal,, +B%af +v%a¢_, =0, n=12,.,

where

agal

(26)

a; = —xgn* + (B, —xp)n+ B,
B¢ = n? + (B, — 2iwx, — 1)n + 2nwx, + iwB, + B,,
Y = 2ion + iw(B, — 2) — 2nw.

2n

Equations (26) and (27) are equivalent to Baber and Has-
sé’s Eq. (10). We will take Eq. (26) to be the standard form
for a three-term recurrence relation. In Secs. V and VI we
will also discuss double-ended sequences in which the index
n runs from — o to + o, as opposed to the single-ended
variety considered here.
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Three-term recurrence relations, like second-order dif-
ferential equations, possess two independent solution se-
quences {4,:n=1,2,..} and {B,: n = 1,2,...}. The two se-
quences frequently have the property that lim, ., 4,/B,

= 0. The sequence {4, : n = 1,2,...} is then referred to as the
“solution sequence minimal as n— 0,” or briefly, as mini-
mal. Any nonminimal solution sequence {B,:n = 1,2,...} is
referred to as dominant (Gautschi, p. 25). Dominant se-
quences are not unique, as any multiple of the minimal solu-
tion may be added to them without destroying their domi-
nant property. We typically denote either type of sequence
by the general sequence {a,: n = 1,2,...}. Whether the a,, are
minimal or dominant will be seen to depend on the ratio a,/
a,.

The large n behavior of the expansion coefficients {a:
n = 1,2,...} may be analyzed by writing Eq. (26) as

(7]
an—l

8
a
as "+ B+, =0, (28)
a a

o

dividing by n?, and keeping only the leading order terms in
the result,

N aG
an+1+1+2l_(0 n;lzo.

(29)
a? n a

n
We then see that the a° are elements of the minimal solution
sequence if

g

lim —2 o _ 2@ (30)
n—s oo an _1 n
and the @’ are dominant if
aﬂ
lim — = 1 . (31)
n—» 0 an -1 xO

The ratio of successive elements of the minimal solution
sequence to the recurrence relation (26) is given by the con-
tinued fraction®

6 6 o
A1 —Vai1 %iiVes2 AiaVays (32)
9 ~ pé B° e !
a, n4+1 n+2 — n+3
which for n = 0 gives
o o 6
e _ -7 a3 3§ (33)

aq Bi— Bi— B3-—
However, for single-ended sequences such as arise out of
power series expansions, the first of Egs. (26) requires that

al/a = —-Bs/as. (34)

Equations (33) and (34) cannot both be satisfied for arbi-
trary values of the recurrence coefficients a?, 8 ¢, and 72, so
that the general solution sequence to Eq. (26) is a dominant
one and can usually be generated by simple forward recur-
sion from a chosen value of ai. The resulting power series
(25) will converge for all x of magnitude less than the mag-
nitude of x,, but will diverge when |x|>|x,|.

A power series solution for Eq. (1) about the singular
point x = x, may be obtained simply by letting z = x — x,,.
Then Eq. (1) in this new variable becomes

Z(Z+ X)Y . + (By + Byxy + By2)y,

+ [0*2(z + x,) — 29wz + B,]ly =0, (35)
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which is of the same form as Eq. (1), and a power series
solution about z = 0 can be generated in the same manner as
before. Such a solution could be useful in obtaining the be-
havior near x = x, of solutions on the exterior interval
[x,<x < ). However, the radius of convergence of this se-
ries expansion if just |x,|. It is no more useful in obtaining
eigensolutions on [0<x<x,] asis the series (25), and is vast-
ly inferior to Jaffé’s solution on [x,<x < o ). Second power-
series solutions, in the cases when 1+ B,/x, or
1 — B, — B,/x, are integers, may be found by the method of
Frobenius.

B. The angular eigenvalue problem

The prolate angular coordinate u = (r, — r,)/2a of Eq.
(3) and the oblate angular coordinate u = + (1 + u2)"/?of
Eq. (14) play the same role in their respective wave func-
tions, and the physically meaningful solutions to either of
Eqs. (7) or (20) are those that are finite both at x = 0 and at
x =Xx, (i.e., u or u equal + 1). These solutions are simple
Sturmian eigensolutions, and are obtained for a given value
of w if the angular separation constant 4,,,, which appears as
part of the equation parameter B, in the 8 ¢, can be adjusted
sothat Egs. (33) and (34) are both satisfied. If so, the result-
ing solution sequence {a?: n = 1,2,...} will be purely mini-
mal and the power series (25) will converge at x = x,,.
Equating the right-hand sides of Egs. (33) and (34) yields
an implicit continued fraction equation for the angular sepa-
ration constant 4,,,:

atr atrt ot
- Be- B3~

Thea, B, and y are defined as explicit functions of B; and the
other parameters of the differential equation in Egs. (27),
and Eq. (36) may be solved for 4,,, (thatis, B,) by standard
nonlinear root-search techniques. The expansion coeffi-
cients a? are then generated by downward recursion on
(26), starting from ratios given by (32) at a suitably large
value of n.

Fackerell and Crossman®® have obtained a continued
fraction equation for the eigenvalues of the spin-weighted
angular spheroidal equation (14) by expanding S, (u) ina
series of Jacobi polynomials, and discuss the normalization
properties of these functions (see also Breuer et al.?*). There
is probably an integral relating Fackerell and Crossman’s
Jacobi polynomial solution with the power series solution
reviewed here. Hunter and Guerrieri®® have done a detailed
Wentzel-Kramer—Brillonin—Jeffreys (WKBJ) analysis of
the angular equation for large values of 4,,,, which has pro-
vided analytic insight into branch points associated with
these eigenvalues. Their work might complement Ferrari
and Mashoon’s?® WKBJ analysis of the Schwarzschild
quasinormal frequencies to provide useful insight into the
large / behavior of the Kerr quasinormal frequencies. It is
interesting that none of these recent studies of the angular
equation reference the early results of Wilson,?’ or of Baber
and Hassé. Fackerell and Crossman’s expansions (19) and
(20), for instance, apparently are independently derived
generalizations of Baber and Hassé’s expansions (30) and

0=8%— (36)
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(33). The power series expansion we have given here [ cf. Eq.
(25)] is equivalent to Eq. (34) of Baber and Hassé.

IV. THE SOLUTIONS OF HYLLERAAS AND JAFFE,
INTEGRAL RELATIONS, AND SECOND SOLUTIONS

Although Hylleraas is generally given credit for the first
solution to the bound state problem of the hydrogen mole-
cule ion in 1931, the solution to Eq. (2) derived by Jaffé in
1934® was the first to contain a proof of convergence. Such
proof did not exist for Hylleraas’s representation until Baber
and Hassé provided one in 1935.% (Baber and Hassé appar-
ently also made independent discovery of Jaffé’s solution.)
This section will discuss the eigensolutions of Hylleraas and
Jaffé, and their convergence properties. In particular, Jaffé’s
representation will be shown to be simply convergent for
noneigenfunction solutions to Eq. (1), in addition to being
uniformly convergent for eigenfunctions. An integral equa-
tion for Sturmian eigenfunctions is derived and used to illu-
minate the relationship between the representations of Hyl-
leraas and Jaffé, and to express the solution to Eq. (1) that is
regular as x—oc in terms of the solution that is regular at
X =Xq

A. The solutions of Hylleraas and Jaffé on [Xo<Xx < =)

Equation (1) was

d? d
2+ B, +Bx) L
X dx

+ [0*x(x — x5) — 2900(x — x,) + B, 1y =0.

x(x —xp)

Hylleraas, using hydrogen atom eigenfunctions as Ansdtze,
expanded the solution y(x) that is regular at x =x, in a
series of Laguerre polynomials:

r

L@ nla
y=em)x - n
n=o I'(4B, +in+ B/xo+ 1+ n)
XLEB+B/X—1(_2jg(x — X,)). 37N

[ The superscript (r) on the expansion coefficients a/, indi-
cates that they are related to solutions of “radial” equations,
such as (2), (9), and (15).]

Jaffé took a more rigorous approach and reasoned that
since a power series expansion of solutions to a differential
equation about one regular singular point generally has a
radius of convergence equal to the distance from the point of
expansion to the next nearest singular point, and that since
the singular point at x = O obstructs the convergence of a
power series between x, and «, the obvious solution to the
power series convergence problem was to rearrange the sin-
gular points so that the point x = x;, was moved to O, the
point at o« was moved to 1, and the bothersome singular
point at 0 was shuffled off to oblivion. Jaffé effected this
rearrangement with the variable change u = (x — x,)/x
and then let

y(x) = eiwx —(1/2)B, — "’f(u).
The differential equation for fin terms of the variable u is

u(l — u)*f,, + (¢ +cu + cs)f, + (¢4 + csu)f=0,
(38)

where
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=B+ B/Xxop, ;= —2[c;+1+i(n—awxy)],

ey =c;+2(1 4 i),

¢s= (3B, +in) (4B, + in + 1 + B,/x,),

€= —cs —iB,(3B, — 1) + (i — ) + iwxoc, + B,
The function f(#) can then be expanded in a power series in

u,f(u) =27_, a,u", and Jaffé’s solution to the generalized
spheroidal wave equation is

P,(x) = e +ioxg = (DBt i a (x_xo)"_ (39)
n=0 X
With the Laguerre polynomials defined in Appendix A,
the coefficients a], in the Hylleraas expansion (37) and the
coefficients a, in the Jaffé expansion (39) have the amusing
property of being identical. They obey the same three-term
recurrence relation

acay  +Boag =0, 40)
ana,,  +BLa, +vna,_ =0, n=12,.,
where

a, = (n+1)(n+ B, + B,/x,),
Br= —2n* —2[B, +i(n — ©Xo) + By/xoln

— (1B, + in) (B, + B/x,y) + iw(B, + Byx,) + B,
(41)

Yo =(n—1+1B, + i) (n+ 4B, + in + B\/x,).

The normalization of the Laguerre polynomials is impor-
tant. The convention here is that used by Slater,?® and by
Gradshteyn and Ryzhik.?® Relevant recurrence and differ-
ential properties, as well as alternate normalizations, will be
found in Appendix A.

Convergence of the Hylleraas and Jaffé expansions may
be analyzed by determining the behavior of the expansion
coefficients at large n and applying the ratio test to succes-
sive terms in the series. To this end divide recurrence relation
(40) by n’a, retain terms to O(1/n), and expand
b

. a
lim =14 ——4+—=—+4 ..
n—oo a; n n

an+l (42)

The resulting approximate recurrence relation can be writ-
ten

1 1)(1 a i)_(z 1) (1 E)
(+n + n+n +— )+ 1+

2 3

a—b Zab—a/2—a):o’ (43)

a
x(1-2 4+ +
( Jn n n?

where u, v, and w are constants given by

u=B,+B,/x,+ 1,

v=2[B, + B,/xq+ i(17 — wx,) ],
and

w=2B8,+ B/xy + 2in — 1.
Retaining terms to O(n~>/2) and solving for @ and b we find
@=v—u—wandb=v/2 —u,or
(44)
The large n behavior of the @}, may then be deduced by writ-
ing (42) as

@’ = —2wx, b=i(n—wx,) —}i
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. a4, —a, a b
lim nt = =—+—,

n—»o0 a; ‘/-; n

and integrating with respect to n. The result® is

lim @', =n?e®®/ = '~ @%) =3/4 exp( + 2\ — 2iwx,n).

) (46)
The two signs ( + ) in the exponent indicate the asymptotic
behavior of the two independent solution sequences to the
recurrence relation. It is apparent that one solution sequence
will be dominant and the other minimal for all wx, that are
not pure negative imaginary.

The Laguerre polynomials L, (z) are a dominant solu-
tion to the recurrence relation
(n+1DL5, (2)—Q2n+a+1-2)L5(2)
+(n+a)Ly_,(2)=0. (47)

Repeating the procedure that found lim a}, _ , /a;,, we find

Lse —
lim .,+1(z)=l+ _i+z+1 @
—o L%(2) n 2n

wherez = — 2iw(x — x,). The limiting form of the ratio of
successive terms of the series (37) is
lim (1B, + By/xo+in+n+1)
n—co F(QBZ +B1/xo + 177 + n + 2)
(n+Day, (L7, ,(2)
nla,L;(2)

(45)

1+ V2o (x — xg) + v — 2iwx, + 0(_1_) (48)
Jn n

The ( + ) arises from the ratio a, , ,/a’,, and is ( — ) only
for sequences g/, that are minimal. Hence the only condition
under which Hylleraas’s expansion (37) can converge is if
both (i) 2iw(x — x,) is purely negative real, and (ii) the
sequence {a},: n = 0,1,2,...} is minimal. [We will not consid-
er cases in which 2iw(x — x,) and — 2iwx, are both purely
negative real. Analysis of that condition hinges on the O(1/
n) terms, and in light of the much stronger convergence
properties of Jaffé’s expansion, is not terribly relevant.] In
the context of the quantum mechanics of hydrogen molecule
ion condition (i) is automatically satisfied for any negative
real energy E = — p°/2a (wherep = — iw in the usual no-
tation), and the fulfillment of condition (ii) becomes the
quantization condition on @. [ The continued fraction equa-
tion (53) must be satisfied for the recurrence coefficients
given in (41).] Hence the Hylleraas expansion successfully
represents the eigenfunctions of the bound states of hydro-
gen moleculelike ions, but very little else.

Jaffé’s expansion, on the other hand, is absolutely con-
vergent on [x,<X < o ), and is uniformly convergent there if
24, is finite (usually only if the @}, are minimal). Proof of
absolute convergence is trivial: Choose an x from the half
plane in which | (x — x,)/x| < 1. Then

a1 [(x—x)/x]"+!
a,[(x—x5)/x]"

and convergence at any finite x is assured.

<1,

_|x—xo
X

n— a0
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The condition for uniform convergence is similarly
demonstrated:

lim [lim a, 4 [(x""o)/‘x]“’l ]
n—-»>w | x—+w a:[(x—xo)/x]n
= lim a;_“

r
n

vV —2iox, 1 —i(n— wx,)
Jn n

Convergence is guaranteed if (i) the ( — ) sign is obtained,
which is the case if the sequence {a}: n = 1,2,...} is minimal,
or (ii) if Re(y2iwx,) =0 and Im (5 — wx,) > 0. The first
case again defines the quantization condition for the hydro-
gen moleculelike ions, and has also been used to characterize
the quasinormal modes of black holes—a problem for which
2iwx is complex and the Hylleraas expansion is useless. The
second case can arise in the consideration of hydrogen mole-
culelike ion wavefunctions for negative noneigenenergies if
we definep by E = — p?/2a (i.e.,p = — iw) as before, and
expand the solution y(x) as

yz(x) — e—lwxx—(l/2)51+i17 i b;(x-;XO)n. (49)

n=0

n— o0 a

=14+

The expansion coefficients b/, are generated by a three-term
recurrence relation

aht  +Bobs =0,
@bl +B.bL +7,b5_, =0, n=12,.,

where now the recurrence coefficients &@,, £,, and ¥, are
given by

a,=(n+1)(n+ B, + B,/x,),
B, = —2n* —2[B, — i(n — wxo) + By/x,]n
- (532 - "7) (Bz + Bl/xo) - ia)(Bl + Bzxo) + B3»

?n=(n_1+£B2_”7)(n+w2—”7+B1/x0) ¢2))]
The &,, B,, and 7, of Eq. (51) are the complex conjugates
of the a,, B,, and ¥, of Eq. (41) only if the parameters B,,
B,, B,, », x,, and 7 are purely real. When @ = ip lies on the
positive imaginary axis the independent solutions sequences
to recurrence relation (50) are neither minimal nor domi-
nant, so this expression is not well suited to determine the
exact hydrogen moleculelike ion eigenfunctions—but it does
generate the general negative energy solutions in a stable

manner, and was useful in the numerical verification of the
integral relationships to be discussed forthwith (Sec. IV C).

(50)

B. The radial eigenvalue problem

The eigensolutions of the generalized spheroidal wave
equation (1) on the interval [0<x < « ) are those functions
y1(x) or y,(x) of Eqs. (39) and (49) for which 24, or 2b,
converge. The function y,(x) then describes an eigenfunc-
tion that is regular at x=x, and has purely
exp[ + i(wx — 7 In x) ] behavior as x—w, and y,(x) de-
scribes an eigenfunction that is regular at x = x, and has
purely exp [ —i(wx — ¢ Inx)] behavior as x—>w. The
sums over a;, or b, will usually converge iffthea], or b, are
minimal solutions to their respective recurrence relations
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(40) and (50), and this will happen only for certain charac-
teristic values of the frequency w. (The values of @ for which
the g}, are minimal will not be the same as the values of @ for
which the b, are minimal.) As in our previous discussion of
the angular eigenvalue problem, the coefficients ¢, will be
minimal iff they satisfy the continued fraction equation

a, _ —Vn+t Cni1Vni2 Anya2Vnys . (52)
a;rz B;-H_ ;+2_ ;+3_
which in turn will require that o be a root of
;Y @Yy ahYs
0=8}— (53)

Bi— Bi— Bi-
Herethea,, B, and ¥, are defined as functions of w in Egs.
(41). Analogous equations can be written concerning the b
and the &,, 3,, and 7, in the instances when eigensolutions
of the type y, are desired.

In most physical situations both the @?,8 ¢, and 9 for
the angular eigenvalue equation (36) and the
a,, B, and ¥, for the radial eigenvalue equation (53) are
functions of both the angular separation constant 4,,, and of
the frequency w. This will then require the simultaneous so-
lution of Eqs. (36) and (53), which usually is not difficult
numerically. Such solutions were demonstrated for the elec-
tronic spectra of the hydrogen molecule ion by Hylleraas,’
Jaffé,® and Baber and Hassé.> Analogous solutions for the
quasinormal modes of black holes are given by Leaver.'!
With use of eigensolutions of type y, a similar approach can
be taken to the “algebraically special” black hole perturba-
tions discussed by Chandrasekhar.*®

C. Second solutions by way of an integral transform
If we express the solutions to Eq. (1) near the singular
point x = X, as

lim y(x) = (x — xy)", (54)

then the exponent k, takes the valuesO0and 1 — B, — B,/x,,.
If B, + B,/x, is not an integer, a second solution to Eq. (1)
may be found through the substitution
y(x) = (x — x,)! B~ B/%g(x). The differential equation
for g will be

xX(x —Xx0)8xx + [By+ (2 — B, — 2B,/x,)x]g,
+ {o*x(x — x,) — [290 + (1 — By, — B,/x,)B /%]
X (x —x,) + B;}g =0, (55)

which is of the same form as Eq. (1), and a regular solution
for fmay be found by the method of Jaffé. If B, + B,/x,is an
integer, then a second solution to Eq. (38) may be found by
the method of Frobenius. The expansion coefficients for the
resulting second solution will obey an inhomogeneous three-
term recurrence relation, and contain a free parameter that
may be empirically adjusted to vary the amount of the first
solution that appears in the second. This property is interest-
ing, but the procedure is tedious and will not be dealt with
here (see Rabenstein®! for a discussion of Frobenius’s meth-
od).

A more entertaining approach to the second solutions is
open to those who remain curious about the equality of the
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Hylleraas and Jaffé expansion coefficients. Wilson®’ specu-
lated that “the solution of (a generalized spheroidal wave
equation) is probably expressible as a homogeneous integral
equation.” One such integral had already been given by
Ince®® for the particular parameters choice
7= +i(B,+ B,)/2, and although the contour used by
Ince was [ — 1,1], his expressions can be made valid on
[1,e0). Another integral relation for a different, though still
specific, choice 7 = +i(B,/2 — 1) is arrived at through
consideration of the equality of the Hylleraas and Jaffé ex-
pansion coefficients, and leads directly to a representation
for a second solution to the differential equation as a series of
irregular confluent hypergeometric functions. The new rep-
resentation is valid for arbitrary . The argument goes as
follows: Start with Eq. (1)

d?%
"

x(x —xg) + (B + Bx) —‘-11
dx

+ [@*x(x — xy) — 20w (x — X,) + B3]y =0,

and make the substitution y = ¢*f(x). The differential
equation for f(x) is

x(X — X0)f xx + [By + Byx + 2iwx(x — x,) 1f
+ [(B, + 2in)iox + 2nwx, + ioB, + B;1f=0,

(56)
and fadmits to the expansion
) nla’
flx) = - -
,,;O I'(UB, +in+ By/x,+ 1+ n)
XLE+TBx=1 _ 2y (x — x,)) (57
(Hylleraas), and
]‘(x) =x—(1/2)32—-i1, i a;(x—xo)" (58)
n=0 X

(Jaffé). The coefficients a;, are the same for each expansion
and f(x) is proportional to f(x) when both are eigenfunc-
tions such that £ a] converges. Specializing to the case
in = B,/2 — 1, these expressions, respectively, become

r
n

o nla
SO = X TE 1Bt

XL gt B =Y — 2io(x — xo)), (59)
and
flx) =x'—" i a, (5—_&) (60)
n=0 X
Perusal of standard integral tables*” reveals
f e "t°L%(t)dt = Mj—_l)s—ﬂ— 1 (s_—_l_)",
0 n! s
(61)

so that with the associations a=28,+ B/x,—1,
t = — 2iw(x-x,), and s = x/x,, we conclude

f(x) ____xl +B,/xofe2iwx(t—%)/%
[

X (t — xg) B+ Bv%—1f(1)dt, (62)

for some contour c that includes x, and «. Multiplicative
constants have been omitted from the integration. This re-
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sult is verified via the theory of integral transforms in Ap-
pendix B. The important result of that derivation is the pro-
curement of the bilinear concomitant

d d
Plxt) = t(t — %) [f(t) 2 Ko — K(x) Itf(t)]

+ (2iwt? + (B, + 2B, /x, — 2iwxy)t
— B, — xo)K(x,0)f(2),
where the kernel K(x,?) is given by

(63)

K(x,t) = exp[2iwx(t — x5)/x,] (t — x0) =%
and
32 = l —B2 —Bl/xO.

The exponent s, takes the second of the allowed values of &,
of Eq. (54). The bilinear concomitant must vanish at each
end of the integration contour.

On such an integration contour, Eq. (62) is an integral
relation among solutions f(x) and f(x) to Eq. (56). This
does not necessarily mean that fand f are the same solution
to the differential equation, however. Equation (62) is an
integral equation only for functions f(x) that have the de-
creasing exponential behavior at x = 0. If such an f(x)
should also happen to be regular at x = x,, then f(x) is an
eigenfunction of Eq. (56) and one end point of the contour ¢
can be taken directly to t = x,. In this case f(x) and f(x) are
proportional, and Eq. (62) becomes an integral equation for
eigenfunctions. It may be noted that the quasinormal modes
of black holes can be described by this kind of eigenfunction,
although the requirement iy = B,/2 — 1 restricts the appli-
cability of (62) to consideration only of scalar fields [s =0
in Egs. (11) and (19)].

The integration contour ¢ is determined by the require-
ment that the bilinear concomitant P(x,t) vanish at its end

points. If f(x)—(x — x,)" as x—x,, then the allowed values
for the exponent s; ares;, =0 and s, =1 — B, — B,/x,. We
consider two general cases.

X—Xg

(1) f(x) — (constant) and either Re(s,) <Oors, = 0.

In this case P(x,?) vanishes at ¢ = x, and the contour ¢ may
be taken to be that shown in Fig. 1(a). The approach angle
is chosen such that Re(2iwxt /x,) <0. The kernel K(x,?) is
then an exponentially decreasing function of x, and Eq. (62)
expresses the solution f(x) regular as x— oo in terms of the
solution f(¢) that is regular as +—>x,. If f(#) is also regular as
t— 0, then w is an eigenfrequency, fis proportional to f, and
Eq. (62) becomes an integral equation for the eigenfunc-
tions. We can see how this works by substituting the Jaffé
expansion for f(¢) into Eq. (62):

f(x) =x1+B/% Jw exp[2iwx(t — x4)/%,]

x(t_xo)—Sztl—Bz z a; (t__t_.xl) ]dt'
n=0

(64)
The behavior of f(x) near x = x, is determined by the large ¢
behavior of the integrand. If @ is an eigenfrequency, the se-
ries Z a, [ (t — x,)/t ]"is uniformly convergent as #— o and
the integral for large ¢, x—x, looks like
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Im{) | (a) Im(t) | (b

| Xo Re(t) . Re(t)

FIG. 1. Contours for use with integral relation (62).

_ xox o
S(x) —»x‘“’"""f exp[iwx (t — x4)/xo)t B/ dt

(since s, =1 — B, — B,/x,) and is always finite with the
aforementioned choice of approach angle 8. Hence f(x) is
finite as x—x,. If  is not an eigenfrequency, then

t—> o0
Sa, [(t—x)/t]" — 52— 2ot

the integral looks like

_7(x) :;"xl +B,/on exp[2iw(x — xo)t /x5t =%~ Lt
and

lim f(x) ~ (x — xo)*

X—+Xg
as required for the independent second solution. Note that
while in physical contexts the variable x is a spatial coordi-
nate and is positive and real, the flexibility afforded in the
choice of the approach angle allows Eq. (62) to describe
functions f for which Im () <0.

(2) fix) :>°(x — X,)% or Re(s;) > 0. Note that the re-

striction Re(s,) > O is artificial, since one can always obtain
Re(s,) <O for a function g(x) by substituting
S(x) = (x — x5)"g(x) in Eq. (56). Either way P(x,t) is not
zero at t = x, and the contour c is chosen to be that illustrat-
ed in Fig. 1(b). This contour has the appearance of being all-
purpose and do-everything, but we shall see that if one actu-
ally had the information necessary to use it, one would also
have the information to convert the problem to that consid-
ered in case (1) above, and would end up using the contour
of Fig. 1(a).

The branch cut arises from the factor (¢ — x,) ~* in
K(x,t) if 5, is not an integer, and from the logarithmic term
inherent in fif s, is an integer. The function f(x) is regular as
x— oo regardless of the behavior of f(¢), so that given any
solution f(x) to Eq. (56), Eq. (62) will always give the solu-
tion f(x) that is regular as x— o for the chosen contour c.
On this contour, Eq. (62) is an integral equation for all func-
tions f that are regular at ¢ = 0, but is of limited computa-
tional utility as an integral equation for noneigenfunctions
because a solution that is irregular at x = x,, and regular at
x = oo must be a weighted sum of two component functions,
one regular and the other irregular at x = x,, and both irreg-
ular at x = co. Detailed knowledge of the weighting factors
in the sum is necessary, since the product of only one of the
component functions and the kernel K (x,t) will contribute
to the integral. The product of the other component function
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and the kernel will have the same value on each side of the
branch cut, and will give no contribution. To see how this
works, first consider s, not an integer. Then f(¢) can be writ-
ten

-l e st =X% Y
=1 $ a (=)

+u—x 3 on(E=R ],

n=0

(65)

which is just the sum of two independent Jaffé solutions.
Only the product of K(x,?) and the function corresponding
to the first sum will contribute to the integral, and if that
function were known (i.e., if we knew the value of a3 ), we
could use case (1) above. Similarly, if s, is an integer, then
any solution irregular at x,, is expressible as

— 1B} t—xo) - r(t—xo>"
fi) =t [og( - nz;’oa,, -
+ (t_xo)sz i b; (t—_xo)"]’
n=0 t

which is the form of the second Jaffé solution as obtained by
the method of Frobenius. Here again only the product of
]

(66)

@

Ax)y =x'+8/m i GZU
n=0 X,

0

K(x,t) and the term containing the first sum will contribute
to the integral. If the product of the logarithm and the first
solution were known, we again would revert to case (1)
since the difference of the logarithm across the branch cut is
just the constant 277, and the integrand becomes effectively
integrable at x,. Either way we are required to know the
function that is regular at x = x, in order to evaluate the
difference across the branch cut, and if that solution is
known (such as by Jaffe’s method), then the problem re-
duces to the one considered in case (1).

As noted previously, Hylleraas’s expansion converges
only when o is a purely imaginary eigenfrequency. We have
shown how in that case the relation of the Hylleraas expan-
sion coefficients to the Jaffé coefficients leads to an integral
equation for eigenfunctions (at least when in = B,/2 — 1)
and how, when o is not an eigenfrequency, the same integral
will transform the first solution that is regular at x = x,, into
a second independent solution that is regular at x = . Jaf-
fé’s method always gives a convergent expansion for the re-
gular first solution, and it is interesting to examine the result
of transforming Jaffé’s expansion term by term.

We interchange the summation and the integration to
explicitly evaluate the right-hand side of Eq. (64):

explimx(t — xy) /Xt =57 (t — x,) Bt B/Xot -] dt]

=x'*8% N a) ['(B, + B\/xo+ n)U(B, + B/xo + 1,2 + B,/x,, — 2iwx)

n=0

= 3 &, T(B, + Bi/xo+ mUB, — 1 + n, — B,/x,, — 2iox).
n=0

Here U(a,b,z) is the irregular confluent hypergeometric
function defined by the integral representation

]

T'(a)U(a,b,z) =J e~ #te-(t 4+ 1)b-21dy, (68)
(4]
and obeys the Kummer relation®®
Ulabz) =2' ~°U(1 +a —b,2 — b,z). (69)

The normalization in f(x) is not important here, and the
constant multiplying factors were dropped during the inte-
gration.

The last of Egs. (67) may also be arrived at by the usual
eigenfunction expansion method of solving ordinary differ-
ential equations (see Appendix C), which produces a result
that holds for arbitrary %:

Py =3 @ T(By+Bi/xo+m)
n=0

X U(B,/2 + i + n, — By/Xg, — 2iwx). (70)

The expansion coefficients @, are the same as Jaffé’s [Eq.
(41)], and since y(x) = €*f(x), we now have a second in-
dependent solution to the generalized spheroidal wave equa-
tion (1). Expansion (70) is absolutely convergent on any
interval bounded away from x,, is uniformly convergent as
x— o0, diverges at x = x, when @ is not an eigenfrequency,
and is uniformly convergent as x—x, when w is an eigenfre-
quency.
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(67)

The derivations for the second solutions may again be
repeated with the substitutions y(x) = e ~“*f(x). We then
have our first four convergent representations for solutions
to the generalized spheroidal wave equation:

nx) ermxsaon § g (X250 ()
n=0 X
Po(x) = e~ @y~ B2+ i b (x _xo)", 72)
n=0 X
y3(x) =e* ™ 3 a, (B, + By/x,),
n=0
X U(3B, + in + n, — B,/xo, — 2iwx), (73)
pax) === 3 b7 (B, + Bu/xo),
n=0
XU(5B2—""7+”,—Bl/xo,-i—Ziwx).
(74)

Here y, and y, have been normalized by a factor 1/
(B, + B,/x,), and (2),=I'(z+ n)/I'(z) is Pochham-
mer’s symbol. The a,, are defined by Egs. (40) and (41), and
the b, by Eqgs. (50) and (51). The solutions y, (x) and y,(x)
are both regular as x—x,, and are proportiona